
CS 241: Systems Programming

Lecture 3. More Shell
Fall 2019

Prof. Stephen Checkoway

!1

Yesterday's in-class exercise

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-02.html

Grab a laptop and a partner and try to get as much of that done as you can
in 20 minutes

!2

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-02.html

Unix philosophy

As summarized by Peter H. Salus

‣ Write programs that do one thing and do it well.

‣ Write programs to work together.

‣ Write programs to handle text streams, because that is a universal
interface.

Leads to many small utilities that we string together with the shell

!3

Typical Unix tool behavior

$ program

‣ reads from stdin, writes to stdout

$ program file1 file2 file3

‣ runs ‘program’ on the 3 files, write to stdout

$ program –

‣ For programs that require filenames, might read from stdin

!4

Standard input/output/error

Every running program has (by default) 3 open "files" referred to by their file
descriptor number

Input comes from stdin (file descriptor 0)

‣ input() # Python: Read a line

‣ System.in.read(var) // Java: Read bytes and store in var array

‣ $ IFS= read -r var # Read a line and store in var variable

!5

Standard input/output/error

Normal output goes to stdout (file descriptor 1)

‣ print(var) # Python

‣ System.out.println(var) // Java

‣ $ echo "${var}" # Bash

Error messages traditionally go to stderr (file descriptor 2)

‣ print(var, file=sys.stderr) # Python

‣ System.err.println(var) // Java

‣ $ echo "${var}" >&2 # Bash

!6

Redirection

>file — redirect standard output (stdout) to file with truncation

>>file — redirect stdout to file, but append

<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right

‣ $ ls | wc

2>file — redirect standard error (stderr) to file with truncation

2>&1 — redirect stderr to stdout

!7

Redirection examples

$ echo 'Hi!' >output.txt

$ cat <input.txt

$ sort <input.txt >output.txt

$ ps -ax | grep bash

$ grep hello file | sort | uniq -c

$ echo Hello | cut -c 1-4 >>result.txt

$./process <input | tail -n 4 >output

!8

(Almost) everything is a file

Files on the file system

Network sockets (for communicating with remote computers, e.g., web browsers,
ssh, mail clients etc.)

Terminal I/O

A bunch of special files

‣ /dev/null — Writes are ignored, reads return end-of-file (EOF)

‣ /dev/zero — Writes are ignored, reads return arbitrarily many 0 bytes

‣ /dev/urandom	— Reads return arbitrarily many (pseudo) random bytes

!9

A. $./foo >/dev/null

B. $./foo 1>/dev/null

C. $./foo 2>/dev/null

D. $./foo | /dev/null

E. $./foo &2>/dev/null

!10

Given that /dev/null ignores all data written to it, how can we run the

program ./foo and redirect stderr so no error messages appear in our
terminal?

A. $./foo </dev/null

B. $./foo </dev/zero

C. $./foo </dev/urandom

D. $./foo </dev/eof

E. $ echo | ./foo

!11

Some programs read all of their input before terminating. How can we run
a program ./foo such that it has no input at all?

