
CS 241: Systems Programming

Lecture 2. Introduction to Unix and

the Shell
Fall 2019

Prof. Stephen Checkoway

!1

What is the shell?

Text-based interface to the operating system and to the file system

User enters commands

The shell runs the commands

Output appears on a terminal (terminal emulator)

Commands can change files/directories on the file system

!2

Terminals/terminal emulators

DEC VT100 terminal

https://upload.wikimedia.org/wikipedia/commons/6/6f/Terminal-dec-vt100.jpg

iTerm2 terminal emulator

!3

There are many shells

sh		 	 Bourne shell

bash		 Bourne again shell (the one we'll be using)

dash		 Light-weight Bourne shell (often named sh on Linux)

csh	 	 C shell

tcsh		 An improved csh

ksh	 	 Korn shell (sh-compatible, some csh features)

zsh	 	 Z shell (incorporates aspects of tcsh, ksh, and bash)
!4

Interpreter loop

Display

prompt

Read

command

Interpret

command

Execute

command

!5

The file system

Structured as a single tree with root node: /

Directories hold files and directories

We name files (or directories) by giving a path

through the tree

‣ Absolute path: /usr/bin/ssh

‣ Relative path (we'll come back to this)

!6

Some important directories

/	 	 	 	 The root directory

/bin		 	 Holds programs used for essential tasks (e.g., cp, mv, ls)

/sbin	 	 Superuser (administrator) binaries

/etc		 	 System-wide configuration files

/usr		 	 Holds programs and support files for user programs

/usr/bin	 User binaries

/home	 	 Holds users' home directories (this is configurable)
!7

The current working directory

Every program on the system has its own current working directory

Not related to where the program lives in the file system

Programs can change their current working directory

The initial working directory of a running program is the current working

directory of the parent—the program that launched the the program

!8

Bash's current working directory

The shell has a current directory (like every running program)

cd changes the current working directory

pwd prints the current working directory

Recall that we can name files using an absolute path or a relative path

‣ Absolute (starts with a /): /usr/bin/ssh

‣ Relative to the current working directory (doesn't start with a /)

Programs run by bash start with their initial working directory set to bash's

current working directory

!9

Example of a relative path

!10

A. /dir/file

B. /dir/dir/file

C. /dir/dir/dir/file

D. All three files

E. None of them (e.g., because it's

an error)

If we have three (poorly named) files with paths 

/dir/file  
/dir/dir/file  
/dir/dir/dir/file  

and we run the two commands 

	 $ cd /dir  
$ rm dir/file  

which file is deleted?

!11

Two special directory entries

Each directory contains two special entries

‣ .		 the directory itself (pronounced "dot")

‣ .. the directory's parent (pronounced "dot dot")

We can use these in paths

‣ These all refer to the same directory  

	 /usr/bin  
/usr/./bin/.  
/etc/../usr/bin

‣ . is usually only used at the start of a relative path as ./  

	 ./foo

‣ cd .. takes us to the parent directory of the current directory

‣ cd ../.. takes us to the current directory's parent's parent

!12

A. /

B. /bin

C. /usr/bin

D. /usr/bin/bin

E. Some other directory

Which directory is listed if we run the following two commands in the shell?

$ cd /usr  
$ ls bin/../../bin

!13

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

• Multiple short options can be combined -a -b -c is the same as -abc

• Options can take arguments: -o file.txt or --output=file.txt

‣ ⟨arguments⟩ are the things the command acts on

• Often file paths or server names or URLs

• When no arguments are given (or a single -), many commands read stdin

Example: tar -zcf archive.tar.gz --verbose dir/file1 file2

!14

Example meaning

!15

Click to go to explainshell.com

https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2
https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2

Shell commands

Shell builtins

‣ Functionality built into bash (all listed in the manual)

‣ E.g., cd, alias, echo, pwd

Shell functions

‣ User-defined functions (we'll get to these later)

Aliases

‣ E.g., alias ls='ls --color=auto'

Programs stored on the file system

‣ /bin, /usr/bin, /usr/local/bin, /sbin, /usr/sbin

‣ E.g., ssh, cat, ls, rm

!16

Useful commands

‣ ls – list files

‣ cd – change directory

‣ pwd – print the working directory

‣ pushd, popd, dirs – use a stack to

change directories

‣ cp – copy a file

‣ man – show the manual page

‣ mv – rename (move) a file

‣ mkdir, rmdir – make or delete a

directory

‣ rm – delete a file

‣ chmod – change file permissions

‣ cat – concatenate files

‣ more, less – pagers

‣ head, tail – show first/last lines

‣ grep – match lines

‣ wc – count words

‣ tr – transform characters

‣ split, join, cut, paste

‣ sort, uniq

!17

Manual (man) pages

man is the system manual

‣ Use this to find out more about Unix programs

‣ $ man cp

whatis show just single line information

‣ also via $ man -f cp

apropos search for keyword, return single lines

‣ also via $ man -k cp

whereis locate binary, source, man page

‣ $ whereis cp  
cp: /bin/cp /usr/share/man/man1/cp.1.gz

!18

Sections of the manual

Divided into sections

1. user commands (e.g., cp(1), ls(1), cat(1), printf(1))

2. system calls (e.g., open(2), close(2), rename(2))

3. library functions (e.g., printf(3), fopen(3), strcpy(3))

4. special files

5. file formats (e.g., ssh_config(5))

6. games

7. overview, conventions, and miscellany section

8. administration and privileged commands (e.g., reboot(8))

Use man 3 printf to get info from section 3

‣ You can use man -a printf to get all sections

!19

Pathname expansion/globbing

Bash performs pathname expansion via pattern matching (a.k.a. globbing)

on each unquoted word containing a wild card

Wild cards: *, ?, [

‣ * matches zero or more characters

‣ ? matches any one character

‣ […] matches any single character between the brackets, e.g., [abc]

‣ [!…] or [^…] matches any character not between the brackets

‣ [x-y] matches any character in the range, e.g., [a-f]

!20

Example

$ ls ex/*.txt

ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt

ex/b-2.txt ex/b-3.txt

$ ls ex/?-3.*

ex/a-3.bin ex/a-3.txt ex/b-3.bin ex/b-3.txt

$ ls ex/[^acd]-[0-9].b*in

ex/b-1.bin ex/b-2.bin ex/b-3.bin

$ ls "ex/*"

ls: cannot access 'ex/*': No such file or

directory

!21

Which command copies all Java source files (those whose names end

in .java) from the directory a/b to the directory /tmp?

!22

A. $ cp a/b/[a-z].java /tmp

B. $ cp a/*/*.java /tmp

C. $ cp a/b/*.java /tmp

D. $ cp a/b/?.java /tmp

E. $ cp a/b /tmp *.java

In-class exercise

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-02.html

Grab a laptop and a partner and try to get as much of that done as you can!

!23

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-02.html

