
CSCI 210: Computer Architecture
Lecture 7: Negative Numbers, Overflow

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

1

Announcements

• Problem Set 2 due Friday

• Lab 1 available now

How We Store Numbers

• Binary numbers in memory are stored using a finite, fixed
number of bits (typically 8, 16, 32, or 64)

– 8 bits = byte (usually and always in this class)

• Pad extra digits with leading 0s

• A byte representing 410 = 00000100

Java

• A byte is 8 bits

• A char is 16 bits

• A short is 16 bits

• An int is 32 bits

• A long is 64 bits

Rust

• bools are 1 byte, chars are 4 bytes

• Specify size in type for ints

– i8, i16, i32, etc

• isize or usize will be the size of an address on the architecture
it’s compiled for

– 32 bits on 32 bit systems, 64 bits on 64 bit systems

In C, an int is

A. 8 bits

B. 16 bits

C. 32 bits

D. It depends

E. None of the above

C specifies a minimum size for types

• chars are 1 byte and must be at least 8 bits

• shorts and ints must be at least 16 bits

• longs are at least 32 bits

• long longs are at least 64 bits

• sizeof(type) tells us how many bytes type is

• 1 = sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤
sizeof(long long)

So how do I know?

• Use sizeof(int) to check

• Or use C99 types like int16_t or int32_t

Questions So Far?

How do we indicate a negative number?

• Sign and magnitude (History)

• Ones’ Compliment (History)

• Two’s Compliment (Modern Systems)

Sign and Magnitude

• Have a separate bit for sign

• Set it to 0 for positive, and 1 for negative

• Can represent from -127 to 127 in 8 bits

• With n bits, can represent – (2n – 1 – 1) to 2n – 1 – 1

Addition and subtraction are a hassle

Ar = B – A
Ars = Bs

Start
Subtraction Start Addition

Bs = Bs’

As = Bs

Ar = A + B
Ars = As

A > B

Ar = A – B
Ars = As

A = B

Ar = 0
Ars = 0

Done

Diagram from Marek Andrzej Perkowski

A byte representing -610 in Sign and Magnitude
(with leftmost sign bit) is

A. 0000 0111

B. 1000 0110

C. 1000 0111

D. 1111 1110

E. None of the above

Which is NOT a drawback of Sign and Magnitude?

A. There are two zeros

B. Unclear where to put the sign bit

C. Complicated arithmetic

D. Difficult to convert numbers to negative representation

E. None of the above

Ones’ Complement

• To make a number negative, just flip all its bits!

• Need to know how many bits: -5 in

– 4 bits: -0101 = 1010

– 8 bits: -00000101 = 11111010

A byte representing -610 in Ones’ Complement is

A. 00000110

B. 10000110

C. 11111001

D. 11110110

E. None of the above

Ones’ complement

• Two zeros: 00000000 and 11111111 (in 8 bits)

• Addition:

– Perform normal n-bit addition

– Add the carryout bit back to the result

Two’s Complement

• To compute –x, flip all the bits of x and add 1

• For n bits, the unsigned version of –x = 2n – x

• Can represent –128 to 127 in 8 bits
– In n bits, can represent –2n–1 to 2n–1 – 1

• Only one zero (00000000 in 8 bits)

• Used in modern computers

Short aside

• ones’ complement involves taking each bit and taking the
complement with respect to 1; there are many bits so many
complements with respect to 1 hence “ones’ complement”

• two’s complement involves taking a complement with respect
to a single power of 2, not bit-by-bit, hence “two’s
complement”

• Yes. It is confusing. No. No one remembers this.

-6 in Two’s Complement

A. 11110110

B. 11111001

C. 11111010

D. 11111110

E. None of the above

Two’s Complement: 111111012 = ?10

A. -2

B. -3

C. -4

D. -5

E. None of the above

If we multiply 111100012 by -1, we get _____2

A. 00001110

B. 00001111

C. 00011110

D. 01110001

E. None of the above

Addition and Subtraction

• Positive and negative numbers are handled in the same way.

• The carry out from the most significant bit is ignored.

• To perform the subtraction A − B, compute A + (two's
complement of B)

For n bits, the sum of a number and its negation will
be

A. 0n-1…00

B. 1n-10n-2…00

C. 1n-1…10

D. It will vary

E. None of the above

111101102 + 000011002 = ?2

A. 00000010

B. 00001100

C. 11110010

D. 11111110

E. None of the above

10012 + 10112 = ?2

A. 0010

B. 0100

C. 1000

D. 1111

E. None of the above

Overflow

• Overflow occurs when an addition or subtraction results in a
value which cannot be represented using the number of bits
available.

• In that case, the algorithms we have been using produce
incorrect results.

A. -2147483648

B. 0

C. 2147483647

D. 2147483648

What will this java code print?

public static void main(String args[]) {
int x = 2147483647;
x = x + 1;
System.out.println(x);

}

Handling Overflow

• Hardware can detect when overflow occurs

• Software may or may not check for overflow

– Java guarantees two’s complement behavior!

– In C, overflow is “undefined behavior” meaning, it can do anything

– In Rust, overflow is checked in debug builds but not optimized builds!

How To Detect Overflow

• On an addition, an overflow occurs if and only if the carry into
the sign bit differs from the carry out from the sign bit.

• Overflow occurs if adding two negative numbers produces a
positive result or if adding two positive numbers produces a
negative result.

Will 011111112 + 000001012 result in overflow
when treated as 8-bit signed integers?

A. Yes

B. No

C. It depends

Unsigned Numbers

• Some types of numbers, such as memory addresses, will never
be negative

• Some programming languages reflect this with types such as
“unsigned int”, which only hold positive numbers

– uint32_t in C99

– u32 in Rust

– Java only has signed types (except for char which is unsigned 16-bit)

• In an unsigned byte, values will range from 0 to 255

In MIPS

• add, sub, addi instructions cause exceptions on (signed)
overflow

• addu, subu, addiu instructions do not

• Rationale: In C, unsigned types never cause overflow, they’re
defined to wrap (produce a value modulo 2n)

• In practice: Since overflow is undefined behavior, it is assumed
to never happen so compilers always use addu/subu/addiu

Reading

• Next lecture: How Instructions Are Represented

– Section 2.5

• Problem Set 2 due Friday

• Lab 1 due next Monday

34

	Slide 1: CSCI 210: Computer Architecture Lecture 7: Negative Numbers, Overflow
	Slide 2: Announcements
	Slide 3: How We Store Numbers
	Slide 4: Java
	Slide 5: Rust
	Slide 6: In C, an int is
	Slide 7: C specifies a minimum size for types
	Slide 8: So how do I know?
	Slide 9: Questions So Far?
	Slide 10: How do we indicate a negative number?
	Slide 11: Sign and Magnitude
	Slide 12: Addition and subtraction are a hassle
	Slide 13: A byte representing -610 in Sign and Magnitude (with leftmost sign bit) is
	Slide 14: Which is NOT a drawback of Sign and Magnitude?
	Slide 15: Ones’ Complement
	Slide 16: A byte representing -610 in Ones’ Complement is
	Slide 17: Ones’ complement
	Slide 18: Two’s Complement
	Slide 19: Short aside
	Slide 20: -6 in Two’s Complement
	Slide 21: Two’s Complement: 111111012 = ?10
	Slide 22: If we multiply 111100012 by -1, we get _____2
	Slide 23: Addition and Subtraction
	Slide 24: For n bits, the sum of a number and its negation will be
	Slide 25: 111101102 + 000011002 = ?2
	Slide 26: 10012 + 10112 = ?2
	Slide 27: Overflow
	Slide 28: What will this java code print?
	Slide 29: Handling Overflow
	Slide 30: How To Detect Overflow
	Slide 31: Will 011111112 + 000001012 result in overflow when treated as 8-bit signed integers?
	Slide 32: Unsigned Numbers
	Slide 33: In MIPS
	Slide 34: Reading

