
CSCI 210: Computer Architecture

Lecture 27: Control Path

Stephen Checkoway

Oberlin College

Apr. 29, 2022

Slides from Cynthia Taylor

1

Announcements

• Problem Set 8 due today

• Lab 7 due Monday

• Office Hours today 13:30 – 14:30

Data & Control Path

R-Type Instruction

RegDst

ALUSrc

MemToReg

RegWrite

Executing Load and Store Operations
• compute memory address by adding base register to 16-bit sign-

extended offset field

• store value written to the Data Memory

• load value read from the Data Memory, written to the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

opcode rs rt offset

31:26 25:21 20:16 15:0

Load/

Store

Which wire, if always 1 would break lw?

A

B C D

Load Instruction

RegDest

MemWrite

MemRead

MemtoReg

RegWrite

Executing Branch Operations

• compare the operands read from the Register File during

decode for equality (zero ALU output)

• compute the branch target address by adding the updated PC

to the 16-bit sign-extended offset field in the instruction

Executing Branch Operations

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

zero

ALU control

Sign

Extend16 32

Shift

left 2

Add

4
Add

PC

Branch

target

address

(to branch

control logic)

opcode rs rt address

31:26 25:21 20:16 15:0

Branch-on-Equal Instruction

Branch

MemWrite

MemRead

AluSrc

RegWrite

Control Truth Table

R-format lw sw beq

Opcode 000000 100011 101011 000100

RegDst 1 0 x x

ALUSrc 0 1 1 0

MemtoReg 0 1 x x

RegWrite 1 1 0 0

Outputs MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

Main control takes the 6 opcode bits and produces the control signals

using combinatorial logic

Recall: PLAs

• Derived from truth table using sum of products

• Allow us to encode arbitrary functions

• Used to derive control signals in the datapath

– Each control signal is a function of the 6 opcode bits

ALU Control

Takes as input 2-bit ALUop (derived from

opcode) and 6-bit funct field; outputs 4 bits

Instruction ALUOp funct ALU function Ainvert Binvert ALU

operation

load word 00 (add) XXXXXX add 0 0 10 (add)

store word 00 (add) XXXXXX add 0 0 10 (add)

branch equal 01 (subtract) XXXXXX subtract 0 1 10 (add)

add 10 (r-type) 100000 add 0 0 10 (add)

subtract 100010 subtract 0 1 10 (add)

AND 100100 AND 0 0 00 (and)

OR 100101 OR 0 0 01 (or)

NOR 100111 NOR 1 1 00 (and)

set-on-less-than 101010 set-on-less-than 0 1 11 (less)

Implementing Jumps

• Jump uses word address

• Update PC with concatenation of

– Top 4 bits of PC + 4

– 26-bit jump address

– 00

2 address

31:26 25:0

Jump

Select Best Answer

A Yes – we need both new control and datapath.

B Yes – we need just datapath.

C No – but we should for better performance.

D No – just changing control signals is fine.

E Single cycle can’t do jump register.

Do we need to modify our design

to do jump?

Datapath With Jumps Added

What will the Signals for Jump be?

Jump

Branch

MemWrite

RegWrite

Questions on the Data & Control Path?

Reading

• Next lecture: Pipeline

– Section 5.7

29

