CSCI 210: Computer Architecture Lecture 19: State Elements

Stephen Checkoway

Oberlin College
Nov. 15, 2021
Slides from Cynthia Taylor

Announcements

- Problem Set 6 due Friday
- Lab 5 due Sunday
- Office Hours Tuesday 13:30-14:30

Last Class

Adding Conditional Branching

- Want to be able to support beq, bne, etc
- Need to be able to check equality
- If $a=b$, then $a-b=0$

Detect 0 in Multi-bit ALU

- Subtract a - b
- Take output from each 1-bit ALU

We know Result0-31 are 0 if we perform a operation on Result0 though Result31, and it outputs \qquad
A. AND, 0
B. $\mathrm{OR}, 0$
C. NAND, 1
D. $\mathrm{XOR}, 0$
E. None of the above

Detect 0 in Multi-bit ALU

- Subtract a - b
- Take output from each 1-bit ALU
- OR outputs together
- If any output is 1 , result will be 1 , else 0
- Negate the result

Multi-bit ALU with zero check

Symbol for Multi-bit ALU

Logic Gates and Timing

Time

Which of the following most closely maps to Y (the output of the inverter)?

Inverter
$\underline{X Y}$
01
10

E None of the above.

Select the correct output for Y

AND gate waveforms

- Inputs
- Yellow
- Blue
- Output
- Pink

DS7034 00.01.01.07.01 DS7A212600105 Build : Sat November 13 06:35:52 2021

RIGOL stop H 200 ms ,

Two Types of Logic Components

State Elements

- Output depends on input, AND a value saved inside the element
- Have memory

Set-Reset (S-R) Latch

- Output depends on S, R, AND previous value of Q
- Stores 1 bit of state

S-R Latch: $S=1, R=0$

	\mathbf{Q}
A	0
B	1
C	Q from before
D	\bar{Q} from before
E	None of the above

S-R Latch: $S=0, R=1$

	\mathbf{Q}
A	0
B	1
C	Q from before
D	\bar{Q} from before
E	None of the above

S-R Latch: $S=0, R=0$

	\mathbf{Q}
A	0
B	1
C	Q from before
D	\bar{Q} from before
E	None of the above

$S-R$ Latch: $S=1, R=1$

	\mathbf{Q}
A	0
B	1
C	Q from before
D	\bar{Q} from before
E	None of the above

S-R Latch

- Set: $\mathrm{Q}_{\mathrm{i}}=1$
- Reset: $\mathrm{Q}_{\mathrm{i}}=0$
- Otherwise, $\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{\mathrm{i}-1}$

Terminology

- The S-R latch is a bistable multivibrator
- Bistable: two stable states-set $\mathrm{Q}=1, \overline{\mathrm{Q}}=0$ and reset $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$
- Monostable: one stable state, one unstable state; the circuit returns to the stable state after a short time in the unstable state
- Astable: two unstable states and the circuit switches between them
- Multivibrator: a digital circuit that uses feedback
- The name comes from the first such circuit that produced a square wave which had many harmonics, hence multivibrateur

Clock

 $\subset \checkmark \sqrt{\square}$- Oscillates between 1 and 0 at a set rate
- Used with elements that have memory

Clocked SR Latch

Figure 3-23. A clocked SR latch.

- Only changes state when the clock is asserted

Given S, R and Clock, Q will be:

D. None of the above

Reading

- Next lecture: Clocks, Latches and Flip flops - 3.7
- Problem Set 6 due Friday
- Lab 5 due Sunday

