O Single Sign-Off, Where Art Thou? An Empirical Analysis of Single
Sign-On Account Hijacking and Session Management on the Web

Mohammad Ghasemisharif
Univ. of lllinois at Chicago

Chris Kanich
Univ. of Illinois at Chicago

Abstract

The advent of Single Sign-On (SSO) has ushered in
the era of a tightly interconnected Web. Users can now
effortlessly navigate the Web and obtain a personalized
experience without the hassle of creating and managing
accounts across different services. Due to the proliferation
of SSO, user accounts in identity providers are now keys
to the kingdom and pose a massive security risk. If such
an account is compromised, attackers can gain control of
the user’s accounts in numerous other web services.

In this paper we investigate the security implications of
SSO and offer an in-depth analysis of account hijacking
on the modern Web. Our experiments explore multiple
aspects of the attack workflow and reveal significant
variance in how services deploy SSO. We also introduce
novel attacks that leverage SSO for maintaining long-term
control of user accounts. We empirically evaluate our
attacks against 95 major web and mobile services and
demonstrate their severity and stealthy nature. Next we
explore what session and account management options are
available to users after an account is compromised. Our
findings highlight the inherent limitations of prevalent
SSO schemes as most services lack the functionality that
would allow users to remediate an account takeover. This
is exacerbated by the scale of SSO coverage, rendering
manual remediation attempts a futile endeavor. To remedy
this we propose Single Sign-Off, an extension to OpenID
Connect for universally revoking access to all the accounts
associated with the hijacked identity provider account.

1 Introduction

The creation and management of online user identities has
long troubled web developers due to the complexity of such

systems and the ramifications of potential vulnerabilities.

This is further exacerbated by the feasibility of Sybil
attacks [13] and the limitations of systems designed to
prevent the automated creation of user accounts at a large
scale [40, 30]. The advent of ubiquitous social and mobile
platforms necessitated the deployment of technologies
that could alleviate the onus of account management and
offer a more integrated cross-platform and inter-service
user experience. This has resulted in the proliferation of
single sign-on (SSO) schemes that allow users to leverage

Amruta Ramesh
Univ. of lllinois at Chicago

Stephen Checkoway
Univ. of lllinois at Chicago

Jason Polakis
Univ. of Illinois at Chicago

their existing accounts in popular identity providers (IdPs)
like Facebook and seamlessly access other web services
or mobile apps (referred to as relying parties, or RPs)
without the nuisance of repeating the account creation
process or creating/managing extra passwords.

Naturally this new paradigm is not without pitfalls,
and previous work has extensively explored the design
and implementation flaws of SSO platforms that enable a
plethora of attacks [46, 53, 49, 3, 28]. While IdPs have
been recognized as single points of failure [43], there has
been no systematic investigation of the deployment of
SSO and how it interacts with RPs’ existing techniques
for session management. We highlight an underlying
limitation of SSO as it is commonly deployed: while RPs
universally verify the link between a local account and
an IdP account at the moment of account creation, the
vast majority use this process to bootstrap a local notion
of identity that is not strongly tied to the IdP’s account
access or control. In this paper we show that even an
ephemeral IdP account compromise can have significant,
lasting ramifications as adversaries are able to gain and
retain access to the victim’s accounts on other services
that support that I1dP.

To better understand the interconnected nature of the
SSO ecosystem we conduct the first, to our knowledge,
large-scale measurement study of SSO adoption. We
implement an automated analysis tool that crawls web
services and identifies whether the account registration or
log in process supports SSO, based on a manually curated
list of 65 IdPs. Our study on the top 1 million websites
according to Alexa found that 6.30% of websites support
SSO. This highlights the scale of the threat, as attackers
can gain access to a massive number of web services.

Even though compromised accounts remain a
widespread and prevalent issue for major services [10]
(e.g., due to phishing [44]), we motivate part of our threat
model by demonstrating a session cookie hijacking attack
that allows complete account takeover in Facebook, the
most prevalent IdP. This attack is completely undetectable
by the user as the attacker’s access does not appear in
Facebook’s list of active sessions. We assess the extent of
this risk with a study on our university’s wireless network.

Next, we investigate the capabilities and challenges

that attackers face when using a hijacked IdP account
to compromise the user’s RP accounts, under different
scenarios. We establish a systematic attack methodology
and manually audit 95 of the most popular web and
mobile RPs. We find that even though the specification
for SSO allows an RP to request reauthentication of the
user’s IdP account, only two RPs consistently require
this authentication during the SSO process. Thus, prior
to our disclosure to Facebook, an eavesdropper would
have been able to use the stolen Facebook cookies to
impersonate victims at any of the other 93 RPs. We also
introduce a novel hijacking attack in which the attacker
preemptively creates accounts with RPs where the user
does not yet have an account. By setting this long-term
trap, the attacker can wait for the user to start using that
service to obtain sensitive information and misuse the
account’s functionality.

We also evaluate the visibility of our attacks in both
scenarios, and outline steps that attackers can take to
minimize the digital footprints left by these attacks. Our
findings further highlight the deleterious effect of SSO on
account management, as we present an attack that allows
the adversary to maintain access to the user’s RP account,
regardless of potential remediating actions taken by the
user (i.e., changing passwords and killing active sessions),
without making any changes visible to the user.

Finally, we identify the remediation options that RPs
offer to users for preventing attackers from further access-
ing their accounts. Our analysis reveals that 89.5% of
the RPs we evaluate do not offer options for invalidating
active sessions. Moreover, manually revoking access and
changing passwords is ineffective in many RPs, and prac-
tically infeasible as it cannot scale; due to the preemptive
account hijacking attack (Section 5), the user would also
have to check every new RP she uses in the future. For
74.7% of the RPs users have no way to recover from our
attacks. This reflects the shortcomings of SSO schemes
and the fractured state of the ecosystem; without a process
for universally revoking permission across all RPs and
simultaneously invalidating all existing sessions in every
RP account associated with the compromised IdP account,
SSO facilitates attackers in maintaining persistent and per-
vasive control over victims’ accounts. As such, we outline
single sign-off, an extension to SSO schemes that allows
users to initiate a chain reaction of access-revocation
operations that propagate across all associated accounts.

This paper makes the following contributions:

* We present the first large-scale study of the SSO
ecosystem by measuring the adoption of IdPs in the
Alexa top 1 million websites and quantifying the
implications that stem from the prevalence of major
providers. We have released our dataset to further
foster research on SSO.

* We present an in-depth empirical evaluation of the

implications of an IdP account compromise, and per-
form a systematic analysis of the subsequent account
authorization and creation process under several
novel attack scenarios for 95 of the most popular web
and mobile RPs. Our findings offer a comprehensive
evaluation of the SSO threat landscape.

* We demonstrate the inherent inability of popular
SSO systems to prevent adversaries from maintaining
access to users’ RP accounts even after permission
revocation. As such, we design single sign-off, a
backwards-compatible extension to OpenID Connect
that addresses this threat.

* We demonstrate a proof-of-concept attack against
Facebook that results in complete account takeover,
to further motivate part of our threat model.

Overall, the pervasiveness of SSO has created an ex-

ploitable ecosystem, further exacerbated by the lack of
session management and hijacking remediation capabil-
ities. Our analysis of how users can be harmed and
how to remediate these attacks will facilitate tackling this
significant yet understudied threat.

2 Background and Motivation

Here we provide an overview of how SSO schemes are
implemented. We then outline the attacker capabilities
assumed by our threat model, and motivate our work
through a network traffic analysis study.

2.1 Single Sign-On Schemes

Broadly speaking, SSO is deployed to simplify user access
to services in three categories: enterprise login, single
login to a suite of distinct yet interrelated services provided
by a single provider, and website/application login also
called web SSO. Examples include universities using
SSO to provide access to unrelated university services
such as student grade systems; Google’s SSO for services
like YouTube; websites like Stack Overflow that support
account creation and login using OpenID Connect [36].
The boundaries between these categories are fluid and
all SSO schemes are similar at a high level. In this
work, we are primarily concerned with web SSO and thus
focus our discussion on OpenID Connect, the most recent
SSO standard. However, the threats we explore are not
restricted to a specific standard.

OpenlID Connect is an extension to OAuth 2.0 [20] that
provides a standardized method for a web service to re-
trieve identity information from an identity provider using
OAuth. The protocol consists of interactions between the
following parties:

* The End-User wishes to authenticate herself to a

website or service.

* The User Agent is typically the End-User’s browser.

* The Identity Provider' (I1dP) is responsible for au-

IThe Identity Provider is referred to as the “OpenID Provider” or OP

thenticating the End-User.

* The Relying Party (RP) is the website/service to
whom the End-User wishes to authenticate. It is
called the relying party? since it relies on the assertion
of the End-User’s identity by the Identity Provider.

OAuth is designed to cover a wide variety of autho-
rization use cases. As such, it has a number of different
protocol “flows” which are inherited by OpenID Connect.
The most common flow used for authentication is the
Authorization Code Flow. A concrete interaction between
the parties when an End-User logs in is as follows. The
End-User initiates logging in to an RP by clicking on
a login link in her web browser (the User Agent) thus
initiating a sequence of steps that, if successful, results in
the End-User being logged in to the RP. Then the User
Agent sends a request to the RP’s web server as normal
and the RP responds by directing the User Agent to visit
the IdP’s OAuth 2.0 Authorization Endpoint, e.g., using a
HTTP 302 Found status code. The endpoints are URLs
identifying the servers (and pages) responsible for per-
forming the specified action. The User Agent follows
the redirection by sending a request to the Authorization
Endpoint. The request identifies the RP, the expected
response type (i.e., an authorization code), a redirection
URL, and the resources to which the RP is requesting
access (e.g., basic account information like a user ID).

Now the IdP needs to perform two key steps before
sending the authorization code back to the RP. The first
step is authenticating the End-User. Precisely how this
happens is up to the IdP but essentially:

* If the User Agent is not logged in to the IdP (or if the
RP requests it) the IdP response directs the user to
enter her credentials. After verifying the credentials,
the IdP sets a cookie containing a unique session
identifier.

* If the User Agent is already logged in to the IdP, it
will already have the cookie. If so, the IdP may not
interact with the End-User at all.

Assuming the authentication was successful, the IdP
asks for the End-User’s consent to share information with
the RP, unless consent has been previously given. Hav-
ing completed the necessary authentication and consent
checks, the IdP directs the User Agent to the redirection
URL specified during the authorization code request. This
URL contains the authorization code as a query parameter.
The User Agent follows the redirection thus delivering
the authorization code to the RP. Note that both the RP’s
request for an authorization code and the IdP’s response
are carried by the User Agent via redirections to the other
party’s appropriate endpoint.

in the OpenID Connect specification [36]. For consistency with other
academic work, we use the term Identity Provider.

2The OpenID Connect specification, somewhat confusingly, addi-
tionally refers to the RP as the “Client” [36].

© rhishing

0!
(¥ 4 .y HaveldP
[@ Res® 55‘"°‘ password
N Have ldP - Takeover RP
U Sniff WiFi cookie

mobile)
Figure 1: Workflow based on attacker’s capabilities.

At this point, the User Agent stops mediating com-
munication between the RP and the IdP. Instead, direct,
server-to-server communication occurs. The RP sends a
request to the IdP’s Token Endpoint. The 1dP responds
with an ID Token and an Access Token. The ID Token
contains an opaque string called the subject identifier
which, together with the specific IdP, uniquely identifies
the End-User. The RP may optionally use the Access
Token to request additional information from the IdP. Hav-
ing successfully authenticated, the End-User is logged
in to the RP. To avoid having to engage in this protocol
for every HTTP request, the RP will set a cookie in the
browser. As long as the cookie remains valid, the browser
remains logged in to the RP without the need for any fur-
ther communication with the IdP (unless the RP explicitly
requires SSO authentication for every session).

2.2 Threat Model

A wide range of attacks can result in users’ accounts
being compromised. Here we outline two different attack
scenarios that capture adversaries with different levels
of capabilities, and which present varying degrees of
technical difficulty and attack scalability. Our goal is
not to exhaustively enumerate methodologies or restrict
the attacker to a specific avenue of compromise, but to
highlight the diversity of alternative methods that are
possible for hijacking user accounts. Moreover, each
scenario presents crucial characteristics that affect the
nature of the attack. Specifically, phishing can enable
stealthier preemptive attacks (Section 5) while session
hijacking results in the attacker “bypassing” Facebook’s
auxiliary detection mechanisms and not appearing in the
active sessions (Section 4).

Figure 1 provides a high level overview of the attack
workflow, depending on what the attacker has access
to; while we use Facebook as the example IdP for the
remainder of the paper, the basic transitions (solid lines)
are applicable to any IdP. We describe the dotted line
transition, which is specific to Facebook, in Section 4.

@ Phishing remains the most common cause of com-
promise, even in major IdPs [7, 44]. By obtaining users’
credentials attackers can completely take over users’ IdP
accounts. For the remainder of the paper we assume that
phishers are able to access the victim’s IdP account in
spite of other mechanisms [1] that might be in place (as
found in [7, 31]).

@ Sniff WiFi (Cookie hijacking). Next we consider
an eavesdropping adversary that extracts HTTP cookies
that allow her to hijack user accounts [8]. This attack
is less scalable than phishing as it introduces physical
constraints (the attacker needs to be within WiFi range)
and can be thwarted by correct deployment of HTTPS.
This attacker is less powerful as she does not obtain
the victim’s password. However, as we demonstrate in
Section 4, the vast majority of RPs do not require the
IdP password to be re-entered, and at the outset of this
study Facebook (the most prominent IdP) was transmitting
session cookies over HTTP connections. This adversary
highlights the ramifications of SSO even for cautious users
that do not fall victim to phishing.

Use of SSO. For our RP takeover study (Section 4)
we assume that the victim has used SSO to create or log
in to the RP account at least once. For the preemptive
account hijacking attack (Section 5) where the attacker
creates the user’s RP account, we assume that the user will
eventually attempt to create the RP account using SSO.
In certain cases the attacks we present work even if the
user’s RP account has not been associated with the IdP
account (i.e., the RP account was created independently)
due to how the RP implements the SSO process. For
instance, after creating an account on Strava3 through a
traditional account creation process, a user can associate
that account with a Facebook account (registered under
the same email) using SSO without being asked to input a
password. For simplicity, we assume the victim uses SSO
in the remainder of the paper.

2.3 Network Traffic Study

This paper explores the security implications of the preva-
lence of SSO and the remediation actions available to
users following account compromise. It is not focused
on how an attacker can compromise a user’s IdP account.
Nevertheless, we investigated the feasibility of an IdP
cookie hijacking attack. We selected cookie hijacking as
it affects even cautious users who do not fall victim to
phishing attacks.

Cookie hijacking. We audited the network traffic from
all popular Facebook apps (main app, Messenger, and
Instagram) on the iOS, Android, and Windows mobile plat-
forms. We discovered that browsing in the iOS Facebook
in-app browser and visiting websites that serve Facebook’s
static content (through the like or share button) exposed
session cookies because requests for static content on the
domain staticxx.facebook.com were not protected
by HSTS and the cookies were not served with a Secure
flag or the flag was not enforced properly. This behavior
was specific to Facebook’s iOS in-app browser. Thus,
the initial HTTP request from the in-app browser sent
session cookies in cleartext. In a controlled experiment

3A popular service for recording and sharing athletic activities.

800 Total
700 Disclosure ot T

New
600 il 1
500 fi 1
400 R
300 1
200 9

100 | 1

Vulnerable Accounts

0 I h D
12/01 26/01 09/02 23/02 09/03 23/03 06/04 20/04 04/05
Date

Figure 2: Number of (unique) total and previously unseen
vulnerable Facebook accounts seen per day.

using our own accounts, we demonstrated a successful
account takeover by replaying three key values of the
captured cookies (c_user, datr, and xs). The exposed
cookies result in a complete account takeover, giving the
attacker the same level of control over the account as when
authenticating using the password. It is worth noting
that reusing session cookies in another device does not
create any unauthorized access alert, giving the attacker
persistent and stealthy access.

Ethics. Before conducting the following experiments
in the wild, we had extensive communication with our
Institutional Review Board clearly describing our study’s
objective as well as the data collection and analysis method-
ology. To ensure the privacy and security of users, all
data collection was conducted by network operations staff
who only shared aggregated, de-identified data with the
research team.

Data collection. To measure the prevalence of this
issue in the wild, operations staff installed our logging
module on a network tap that monitored our university’s
wireless network. This module counted the unique values
seen for the relevant Facebook HTTP cookies for a period
of four months (January—May, 2017). This allowed us to
differentiate between accounts and correctly quantify the
number which could be compromised by an adversary.

Figure 2 shows the number of unique accounts that ex-
posed the required cookies over an unencrypted HTTP con-
nection each day, as well as the number of unique accounts
that had not been previously seen during the experiment.
Overall, we collected a total of 5,729 unique vulnerable
cookies during our experiment, which were appended
to requests toward 11 different Facebook (sub)domains,
with staticxx.facebook.com being the most common.
Since we do not use the exposed cookies to log into the
users’ accounts, we cannot eliminate the possibility of
the same user exposing different cookie values during the
monitoring period. Given the infrequency with which
such cookies expire, and the length of the monitoring
period, we believe this number closely reflects the actual
number of vulnerable users on this network. Finally, the
issue affected a considerable number of versions includ-
ing 28 versions of the iOS Facebook app and 14 of the

iOS Messenger app. Despite the sharp decline after our
disclosure and subsequent fix, cookies were still being
exposed due to users not updating their apps.

This experiment aims to gauge the extent of the dam-
age when wireless traffic is eavesdropped by adversaries.
While networks encrypted with WPA2 and a strong,
tightly-guarded secret key are infeasible to brute force,
well-known keys and open wireless networks (which is
common in free public WiFi, e.g., coffee shops, university
campuses, public transit etc.) make such man-in-the-
middle attacks trivial.

3 Single Sign-On Prevalence

Before exploring the security and privacy ramifications of
the tightly interconnected Web, we conduct a large scale
study of the proliferation of SSO.

Data collection. For our study we use a list of 65 IdPs
that support the OAuth 2.0 and/or OpenID Connect stan-
dards along with their corresponding API endpoints, which
we based on Wikipedia’s list of OAuth providers [48]. We
develop a tool for automatically processing websites and
extracting information regarding which SSO IdPs are sup-
ported in a given domain. The tool is built using the
Puppeteer browser automation library [18].

Upon visiting a domain, our tool first traverses all DOM
elements found on the landing page. Each element is
analyzed for keywords that point to account sign up or log
in functionality using a set of regular expressions. If there
is no match, the element is searched for sign up or log
in links. The same process is repeated for all identified
points of interest. If none of the elements return a result,
our crawler visits and analyzes predefined link patterns
which are commonly used for such functionality (e.g.,
example.com/login, example.com/signup) and also
issues queries to DuckDuckGo to search for login pages
associated with that domain. Once a log in or sign up
page is identified, our tool infers which IdPs are supported
through regular expressions and searching for links to
known SSO API endpoints.

Data analysis. We use our tool to crawl and process
the top 1M websites according to Alexa (as reported on
September 14, 2017) out of which 912,206 were processed
correctly; the others present various errors (e.g., time
outs and DNS lookup failures). Our tool identified SSO
support on 57,555 (6.30%) domains on the list. Figure 3
shows the coverage for all the IdPs that we encountered
during our crawl. We find that Facebook is the most
prevalent IdP covering 4.62% (42,232) of the websites,
while Google and Twitter follow with 2.75% (25,142) and
1.34% (12,294), respectively. We find that more popular
websites are more likely to support SSO, as shown in
Figure 4, with a 10.8% coverage in the top 100K,

Cascading account compromise. Our analysis of
the data collected during our large-scale study revealed

an unexpectedly common behavior. Numerous major
websites that function as SSO identity providers also offer
functionality that allows users to log in to these sites
using other services as identity providers. After manually
investigating every IdP’s website, we found that 52% of the
IdPs exhibit a dual behavior, serving both as RPs and IdPs
for other services. Figure 5 shows which identity providers
are also relying parties for other identity providers. This
behavior is most likely due to the usability benefits of SSO;
despite the services having deployed the infrastructure for
supporting account creation and management, they still
allow users to log in with other services as it offers seamless
integration. However, this behavior also exacerbates the
security risks of the SSO ecosystem, as it increases the
attack surface. Through a series of carefully selected
account hijackings, the attacker can gain access to web
services that do not support SSO authentication with the
initial IdP. The chain of compromises also obscures the
root cause, which could further hinder users’ remediation
efforts. Using a hijacked Facebook account an attacker
could indirectly compromise an additional 226 RPs in the
top 100K by first compromising the IdPs those RPs support,
increasing the respective coverage by 3.1%. For instance,
the attacker can first compromise the user’s BitBucket
account and use that to subsequently compromise the
user’s GitLab account.

It is important to note that the actual increase depends
on both user and website behavior. We do not have data
showing how often users inadvertently create a chain of
IdPs by opting to associate the account on an IdP that
exhibits this dual behavior to a different IdP. On the one
hand, one might expect that to be uncommon. On the
other hand, the ease-of-use that motivates SSO may result
in that being common behavior. Additionally, RPs that
allow users to associate an IdP with their account solely
through an SSO log in (as discussed in Section 2.2) remain
vulnerable nonetheless. Finally, RPs that allow accounts
that were created through a traditional creation process
to be associated with an IdP account over SSO post facto
(e.g., Strava) are also vulnerable regardless of user actions.
Figure 6 depicts the impact of this cascading effect for the
top 100K websites assuming that the victim’s Facebook
account has been compromised. The red nodes are the
RPs that cannot be directly compromised using Facebook
as an IdP but can be compromised by first using Facebook
as an IdP for a second IdP.

4 Relying Party Account Takeover

Here we present our study on the feasibility of RP account
hijacking. We show how attackers can leverage SSO
to take over a victim’s accounts across web and mobile
services, and the ensuing ramifications.

Preconditions. Before any account compromise has
occurred, the user creates an account in an RP using the

example.com/login
example.com/signup

5 =
—_ 1 |
I
[0) 0 1 B
(@)
o 0.01 |
g
2 0.001
° T
0.0001 | TITTIY
SN b@ & S ES IS E S E S 230 P P S ‘\\Q\e* \Q\\\ & Q,\°\\° é"’ *e}‘?’ o\,« @@Qqﬂrb &
RSN \\9_}0 S Qq,\ eQ B @«\‘ +\\>\\‘ \“&“@&*’Z’@\e\e‘”\q é'z"(\\\ 6 & \\s‘\
&S :‘9(\6‘ & *q,f(@\'b < Q’Qf? 4}@% < K b L **\ c\}?‘ s & \.\& (b ,\ &7/ Qb
B oQ
Figure 3: Percentage of websites from the top 1 million that support each identity provider.
1 2 Yah @ @ @ e ©
Word}eiig ° ®
1 O [WindowsLive e
/'0\ Wikipedia o
o= - Twitter ® o0 e e oo © @
< 8t g Tumblr °
o i o
(= L & GooglePlus o0 e e @
© 6 = Google | @ @@ ® ooe000 o o ° o o000 °
S = Github °)
S 4l 3 Forsge S
8 FaD(igl;ggl; o® oeoeoo0o0o® ¢ o o0 o000 ..:.... o0o0OGO®
- B]
2 AmaBziglz] :
0 L A A T A A0 T A ST A A R A , “““““
FF g SO RPN R S
LSS S R T S o%
’\&&&&é‘&*&*‘q@ AT T

Figure 4: Percentage of websites that support SSO per
website rank.

IdP account. At some point after account creation, the
attacker gains access to the user’s IdP account. This can
occur in several ways as captured by our threat model.
To achieve her ultimate goal, whatever that may be, the
attacker would like to log in to the user’s account at the
RP and interact with the service, thus obtaining access to
whatever information or functionality is available.

Methodology. To determine the level of access the
attacker has in the RP, we manually evaluated 29 websites
out of the Alexa top 500 and 66 popular iOS apps that
support Facebook SSO. We selected RPs from a wide
range of different categories and types of functionality. For
the iOS apps, we examined the top 10 apps according to
the official iOS appstore from popular categories (dating,
e-commerce, ride-sharing etc.) and selected those with
SSO support. We also examined the Android version for
a subset of these apps. See Appendix A for the complete
list of RPs.

For each website, we create a new account using SSO
and add any additional information the service requires
(e.g., a phone number). After completing the account
setup, we interact with the service in its usual manner,
including sending messages, making purchases, or com-
menting on articles. Next, we log out of the website. At
this point, we switch roles and consider what the attacker
can do. We begin by injecting the user’s hijacked session
cookie into a clean browser session, which we then use
to authenticate to the IdP during the SSO flow (see Sec-

Relying Party

Figure 5: Dual behavior of IdPs that also operate as
RPs to other IdPs.

tion 2.1). Unless stated otherwise, we assume the role of
the cookie hijacking attacker and do not use the user’s IdP
credentials in any manner. Next, we visit the RP where
the user has an account and go through the normal “log
in with (IdP)” procedure. Finally, we interact with the
website to determine the attacker’s level of access. This
includes actions like looking at the user’s message or order
history, sending new messages, or ordering new items.
We perform a similar experiment for each mobile app.
The key difference is that there is no support in iOS or
Android for adding cookies to Safari or Chrome respec-
tively. We setup a MitM proxy and implement a cookie
overwriting attack [52] to inject the hijacked IdP cookie.*
Results. Table 1 shows a subset of the sites and apps that
we tested and details regarding the attacker’s requirements
and capabilities. In the majority of cases, the attacker’s
level of access to the website or app was identical to the
user’s when using the hijacked IdP cookie (®). This is
expected, as web site operators and app developers have
an incentive to make logging in as painless as possible. In

4Interestingly, while the absence of the Facebook app in iOS results
in the RP apps falling back to the internal browser (Safari), in Android
the RP apps predominantly rely on the Facebook app for SSO. As a
result, cookie hijackers in Android may not be able to conduct the attack
unless they can authenticate with the Facebook app using the cookie but
not the credentials. Phishing attackers are not affected. Nevertheless,
this does not affect the feasibility of the attacks mentioned throughout
this paper as the underlying session management issues are independent
of the access method and are valid in both iOS and Android.

o
) ®

@.

dail@tion

Figure 6: Effect of cascading account compromise in the top 100K websites. IdPs are depicted with yellow nodes (apart
from Facebook). The 7,287 green nodes depict RPs that support Facebook login and can be directly compromised
by an attacker that has hijacked the user’s Facebook account. The 226 red nodes are the RPs that can be indirectly
compromised due to IdPs’ dual behavior. The white nodes are RPs that can not be indirectly compromised using a

hijacked Facebook account.

particular, the attacker is prompted to reauthenticate with
the IdP in only three of the services (we have identified a
workaround for one of them to bypass the restriction). We
explicitly state when the hijacked cookie is not sufficient
for the attack, i.e., the attacker needs the IdP password (®)
to view certain information. Next we briefly expand on
several interesting entries from the table.

Uber. We can view all account information including
the details of previous rides, and can track the victim’s
trips in real time. The attacker has access to all app
functionality; in one experiment we even tipped the driver
from the attacker’s device after the victim’s trip completed.

Hookup. This is one of the RPs that always require
reauthenticating the IdP account before getting access.
However, we have found a bypass which allows us to gain
access using only the IdP cookie; by selecting the account
creation option instead of the log in option, if the session
cookie is present the attacker will be authenticated and the
system will not trigger an SSO reauthentication process.

The Guardian. We only get partial account access. To
reach the settings section the attacker is asked to reauthen-

ticate over SSO and input Facebook’s password. However,
we have identified a workaround: creating a password for
the RP account does not require authentication, and the
created password can be used to then obtain full access.

Kayak. With the Facebook cookie we can obtain book-
ing and trip information. Payment information, email
settings, and adding travelers requires reauthenticating
with the password in Facebook.

Dating apps. We have full control and can view/send
messages, “befriend” users etc. The attacker could also
befriend an account under her control, and track the user’s
location in real-time [34]. In HUD, new messages are
shown as unread on the victim’s phone even if the attacker
reads them first.

E-commerce. Apart from granting access to user in-
formation and account functionality, the attack enables
various scams, e.g., reshipping mule scams [19], fake
listings [27], and intercepting deliveries [32].

Attack visibility. An important aspect of the attack is
the extent of the attack’s visibility, i.e., whether the attack
leaves any digital “footprints” that could potentially alert

Table 1: Feasibility of various attack-related actions in a subset of the relying parties that we evaluated, along with some
of the information or account functionality that an attack can access.

<] @ 2 ¢ o
§ '§ g § = 5" § .5 E
g § & 5 F 4 : F s

Service & < < & 4 5 S & 5 Note

Tinder iO0S o full v N/A N/A N/A Messages remain unread when read by the attacker.

InstaMessage iOS e full X N/A N/A v Does not support simultaneous access from two devices.

Skout iO0S o full v N/A N/A v/ View favorite users who the victim swiped right.

Hookup ioS o® full v vV N/A Found workaround for full access via hijacked cookie.

Ovia i0S ® full v vV N/A Pregnancy/health information. Requires IdP password.

Tripadvisor i0OS o® full * v vV Vv / Workaround for full access in iOS: re-login using cookie.

Booking.com iOS|web | Android @ full * NA v / / Susceptible to account combination attack.

Foursquare i0S o full *fi N/A v N/A Check-in history.

Yelp iOS o full T v v N/A v/ Check-ins, purchases, saved locations (e.g., home addr.).

Airbnb iO0S e full v v v v Access to trip, reservation, and transaction history.

Expedia iOS e full * NA v v/ Passport number, TSA info, flight preferences, payments.

Kayak i0S ®® partial N/A N/A v v Email set via SSO; modifiable in IdP until password is set.

Zillow iOS | web o full * N/A v N/A Creditscore, home address. Creating password does not
require authentication but sends notification.

Uber i0S o full N/A v v/ / Real-time tracking. Email added w/o authentication.

Goodreads iOS | web o® full *x Vv vV vV V Zipcode, DOB. Workaround bypasses RP’s password.

ASOS iOS | web e full *1t %t NA V v v DOB, home address, payment info, orders.

Quora iOS | web | Android @ full v N/A N/A N/A Access to private messages.

Shein i0S o full N/A v vV / Body measurements, orders, payment options, home
address. SSO users can not set password.

Teepr Deals web o full *i %t NA v v/ / Access torecent purchases and credits.

Zoosk i0S e full T *ft v N/A v / Phone number, payments. Password reset via attacker’s
email.

800 Contacts iOS | web ® full N/A N/A v/ N/A Requires IdP password.

IMDB iOS | web o full % N/A N/A N/A v DOB, zipcode, browsing history.

Mediafire iOS | web o full N/A N/A v v/ DOB, zipcode. Access to photos and videos. Email only
set via SSO and modifiable until the password is set.

4shared iOS | web o® full F N/A N/A N/A N/A Cookie does not work in iOS. Access to photos and videos.
IdP password required for full access in iOS.

Pinterest iOS | web o full T *x v vV / N/A Creating password does not send notification.

The Guardian ~ iOS | web ®® partial T *i N/A v v / Creating password does not require authentication and can
bypass IdP password requirement.

WashingtonPost iOS | web o full T N/A v vV / Email set via SSO. No notification for password creation.

Attacker: Cookie @ | Credentials &
Email/Password: Modifiable without authentication % | No notification

the victim to unauthorized access. While major services attack, the attacker could potentially lose access to the

that act as IdPs may deploy extra detection mechanisms
and show session information, that is uncommon in other
services. Specifically, none of the 95 RPs actively notify
the user regarding other devices or active sessions. Fur-
thermore, only ten RPs (see Section 6) actually have an
option to see the active sessions for the user’s account.
While a victim could potentially realize that an attack is
taking place, this is unlikely for a typical user. Facebook
has two security features that could affect the stealthiness
of the attack; it shows the active and recent sessions in
the account security page. It also offers an option to send
the user an alert about logins from unrecognized devices.
However during our experiments with hijacked cookies we
found that no alert is sent to the victim, and the attacker’s
session will not show up in the list unless its duration
exceeds one hour. Thus, in practice the victim will never
become aware of an attack taking place.

Long-term access. Despite the stealthiness of our

user’s IdP account (e.g., due to a password change). That
could prevent the cookie hijacker from accessing the
account on nine RPs (two require an SSO reauthentication
at the start of every session, and seven log the user out
when the IdP password is reset). We design an attack that
allows us to maintain access to the RP accounts even after
losing access to the IdP, exemplifying the implications of
SSO when compared to “traditional” account compromise.
The attack entails the following steps:

(i) The attacker completes the SSO process and logs in
to the user’s RP account.
(ii) The attacker replaces the email address associated
with the RP account with her own email.
(iii) The attacker sets (or resets) the password associated
with the RP account.

As aresult, the attacker can maintain access to the user’s
RP account using the attacker’s email and password to log
in, while the user will still be able to continue accessing

Table 2: RP behavior during the long-term access attack
in the 29 web RPs.

Behavior Number of RPs
No support for passwords 2
Supports both SSO and passwords 27
Password is optional 25
Password is mandatory 2
Changing email does not require password 15
— Password can be set without reset 6
— Password reset sent to attacker’s email 9
Email can not be changed 5
— Email retrieved from IdP 3
— Does not allow change of email 2
Changing email requires password 7

the RP account over SSO. To investigate how RPs behave
in this scenario in practice, we tested all 29 web RPs from
our previous experiment. In Table 2, we break down the
numbers regarding how RPs affect this attack. Fifteen
services allow the attacker to change the account’s email
without requiring the password to be entered; of these,
six allow the password to be set without entering the old
password whereas the remaining nine require the attacker
to engage in the password reset procedure which emails
a link to the attacker’s newly set email address. Even if
the attacker does not know the user’s password she can
leverage this process and maintain long-term access in 22
out of the 29 RPs that we tested. To make matters worse,
while one would expect that RPs would notify users in the
event of an email or password being changed, this is not
always the case. Specifically, four services (booking.com,
onedio, taringa.net, deals.teepr.com) do not notify the user
of these changes and even allow the attacker to make these
changes without requiring any form of authentication.
These findings also highlight a different perspective of

the amplification effect that SSO can have for attackers.

If the victim creates the RP accounts over SSO, only
two of those accounts will definitely have a password
set; given the burden of “password fatigue” [12] many
users will not set passwords in RPs that do not mandate
it. In such a scenario, even if the user always reuses her
password across all websites, a phisher will not be able to
compromise 93 out of the 95 RPs without using SSO.
Account linking attack. We also developed another
attack that allows the attacker to obtain long-term access
to the RP account in a stealthy manner. It requires the RP
to support an option to de-link the IdP account (18 of the
web RPs do).
(i) The attacker completes the SSO process and logs in
to the RP as the user.
(ii) The attacker disconnects (de-links) the user’s IdP
account from the user’s RP account.
(iii) The attacker logs in to her own IdP account, without
logging out of the user’s RP account.
(iv) While the attacker is still in the user’s de-linked

RP account, she links her own IdP account to the
de-linked RP account.

(v) The attacker re-visits the RP while logged in to the
victim’s IdP and completes the SSO process.

(vi) The RP now has associated the two separate IdP
accounts with the user’s RP account.

As a result the attacker can maintain long-term access
to the user’s RP account, regardless of any changes or ac-
tions the user may conduct. We found that five of the web
RPs are vulnerable to this attack (Pinterest, booking.com,
Quora, 9gag, 4shared). To make matters worse, during
our experiments we found that there is no warning to the
user. In fact, booking.com actually sends the confirmation
email to the attacker’s email address; the only notification
sent to the user is that the user’s IdP account has been
disconnected, but no information is given about the at-
tacker’s actions or accounts. When the user visits the RP
there won’t by any difference from prior experiences, thus
remaining oblivious to the attack. We consider this design
to be a significant risk to users: under no circumstances
should RPs link two different IdP accounts to the same RP
account. The victim could recover from this by logging
in to the RP account using her RP credentials, de-linking
and re-linking the RP account with her own IdP account.
Since this attack leaves no trace, the victim would have to
do this for all RP accounts. For Pinterest, users are unable
to regain exclusive account control.

The attacker’s IdP account must not have been linked to
any other account on that RP in the past for the attack to
work. In IMDB the RP does not link the two accounts, but
actually links the account to the attacker’s and the victim
is moved to a new empty account upon logging in. This
could lead to ransom-type attacks where users will have
to pay to regain access to their RP account.

IdP access escalation. We identified an attack that
allows the attacker using the hijacked cookie to reset
the user’s Facebook password (the dotted line transition
in Figure 1), by exploiting a loophole in the verification
process. When adding a new phone number to the account,
the attacker can add her own phone number without
needing to reauthenticate via password, and then use
that new phone number to reset the account password.
Although an email notification is sent to the user, the user’s
active sessions are not logged out and the attacker can
remove her email and phone number to erase any traces.
This gives the cookie hijacker the ability to compromise
any RPs that require IdP reauthentication.

5 Preemptive Account Hijacking

In this section we present a novel attack and conduct an
empirical analysis of its feasibility. We investigate the
scenario where the attacker uses the victim’s IdP account
to preemptively create an account for the victim on an RP
at which the victim does not yet have an account. While

the attacker could create such accounts for conducting
other malicious actions (e.g., sending spam, or as part
of an identity theft attack [5]), here we are interested
in an attacker who waits for the user to join the RP
and then misuses the available information and account
functionality. As such, we want to answer the following
research questions:

(i) Will it be evident to the victim that their IdP account

had been used to register accounts at these RPs?
(ii) What obstacles will the attacker face when trying to
maintain access to these accounts?
(iii) Will the attacker be able to monitor the user’s actions
and use the account after the user joins the RP?

Setup. The attacker identifies an RP of interest where
the user does not have an account and uses SSO to create
the user’s account. After accessing the newly created
account, the RP populates the attacker’s device with
session cookies that enable access to the account. From
that moment on, the attacker can periodically check the
account for any activity signifying that the user has joined
the service.

Methodology. To determine the level of access that
the attacker can maintain after the user joins the RP, and
also identify any obstacles that the services may pose in
practice, we manually recreated the attack scenario in the
95 RPs. Specifically, we visit each RP as the attacker
and initiate the “Sign up with (IdP)” process. Since the
attacker is already logged in to the IdP, the SSO process
completes seamlessly in most cases. Only two RPs require
the attacker to set a password when creating the user’s
account (we found a workaround for one of them). In
practice, if the attacker has knowledge of the victim’s
IdP account password (e.g., through phishing), she could
set the same password in the RP account as well, taking
advantage of the fact that many users reuse their passwords
across sites [11]. Nonetheless, for the remainder of the
section we consider those two services unsuitable targets
for this attack and do not explore them further due to the
uncertainty introduced by this factor.

Next we assume the role of the victim and evaluate the
stealthiness of the attack by exploring whether there is
some form of notification regarding the creation of an
associated account in the RP. Then we visit the RP as
the victim and initiate the account creation process and
log any information shown which might prime the user
that something is wrong. Once the account is created, we
interact with the service and complete a series of typical
user actions. Finally, we switch roles again, and complete
the final phase of the attack; we attempt to access the RP
account using the session cookie(s) that were created upon
the initial visit and also explore what user information or
account functionality we can access.

Results. This attack is indistinguishable from the
RP account hijacking in regards to the information and

account functionality that the attacker can access. In terms
of visibility, “Sign In” and “Sign Up” over SSO redirect
the user to the same point, and there is no explicit message
to signify prior account activity (e.g., something akin
to “Welcome back™). The only message that users may
receive is that an account is already associated with that
email address. Given the confusion of users regarding
the SSO login and account-linking process [43] and the
complicated nature of SSO in general, this is very unlikely
to raise suspicions. On the other hand, during the account
setup phase Quora asks the user what topics are of interest
to her, which is an obstacle to the attack.

Email disassociation attack. In the straightforward
preemptive attack the user will receive multiple email
notifications, one for every account creation in an RP. To
avoid that, we take advantage of how SSO is leveraged by
services, for a stealthier attack.

(i) After gaining access to the IdP, the attacker adds her

own email to the user’s IdP account.

(ii) The attacker sets her own email as the primary email
in the IdP account (this requires knowledge of the IdP
password, or the dotted line transition of Figure 1).

(iii) The attacker creates accounts for the user in the
various RPs using the common SSO workflow.

(iv) The RP accounts are created under the attacker email
but associated with the user’s IdP account.

(v) The attacker sets a password on the RP account (if
passwords are supported — not mandatory).

(vi) (Optional, to remove traces) After the desired RP
accounts have been created the attacker removes her
email from the user’s IdP account.

(vii) (Optional) After the user starts using a specific RP,
the attacker can substitute her email in the RP with
the user’s email address.

The attacker can maintain access to the RP accounts
using her own email and password, while the victim will
be able to log in over SSO. More importantly, in terms of
visibility, the victim will only receive one notification from
the IdP instead of multiple account creation notifications
from the RPs. For Facebook, the user will receive an email
stating “Your primary email address was changed from
foo@example.com to bar@example.com”. The attacker
could opt to run the attack during the night (or repeat
and resume across multiple nights), which would give her
enough time to create all the RP accounts and remove her
email from the IdP account; when the user checks the IdP
account settings the only email visible in the settings will
be the user’s own email (the attacker’s email is only shown
during the “password reset” and “sign out of all devices’
processes). Also, while the user could potentially check
the settings of the RPs in the future after starting to use
those services, this is unlikely for a typical user; this can
be prevented with optional step (vii) for which only nine
RPs send an email to verify the user’s email address. This

5

attack is similar in nature to a login CSRF attack [4] as
the user logs into an account associated with the attacker’s
email address; however, it differs in practice as the user
actually interacts with the account she intended to and
which is associated with her IdP account.

Visibility. Typical users may simply ignore alert emails
they receive due to not understanding the intricacies
of account management or disregarding the emails as
fake/phishing. Angulo and Ortlieb found that only 22% of
hijacking victims became aware due to a warning by the
service [2]. However, in practice attackers can actually
prevent victims from receiving any alerts if the attacker
can gain access to the user’s email provider account or if
the compromised IdP account is also the email provider
(e.g., Google). This is a reasonable threat, as recent work
has found that password reuse remains extremely com-
mon [33], and attackers can also leverage knowledge of a
user’s password (in this case the phisher knows the IdP
password) and public PII to “guess” other passwords [45].
Specifically, the attacker can set up filters to proactively
remove such alerts by redirecting those emails to the trash
folder (setting up such filters is a common attacker tactic
according to findings from Google’s anti-abuse team [7]).
More importantly, even if users become alerted, the ma-
jority of RPs lack the functionality needed for users to
remediate a compromise as we show in Section 6.

6 Post-Compromise Remediation

Here we explore the remediation actions that users can
take if they become aware that their IdP account has been
compromised. Our goal is to explore all potential actions
that users can take at the IdP or RP to prevent the attacker
from further accessing their accounts. Our experiments
further highlight the significant implications of SSO; apart
from the absence of a standardized mechanism to revoke
the attacker’s access to all of the RP accounts, we find
that for the majority of RPs there is no course of action
available that can lock out the attacker.

Conceptually, for a website to authenticate a user with
SSO, a two-link chain is created. The first link is the user’s
authentication to the IdP. The second link is the user’s
authorization for the RP to access the IdP’s stored user
identity. We would like for a user who becomes aware
that her IdP account has been compromised to be able to
sever one of those links and deny the attacker any future
access to her account at the RP. In normal usage, the first
time the user (or attacker) logs into an RP with a given
browser session, the RP will set a persistent cookie in the
browser. After the cookie has been set, the RP will trust
the cookie’s value to authenticate the user.

The practical consequence of using the RP cookie to
authenticate the user is that once an attacker successfully
authenticates as the user and receives the persistent cookie,
this cookie can continue to be used until it expires regard-

mmm User authorization link
mmm Attacker authorization link
Shared authorization link

Relying

Identity
Parties

Provider

Figure 7: Access links after RP takeover. Only dashed
lines can be revoked through the IdP.

less of any user action to break the SSO chain (unless she
is also able to invalidate that RP cookie). Figure 7 depicts
the conceptual connections that exist after the attacker
compromising an RP account. The core of the problem
is that only a subset of the attacker’s connections can
be severed through the IdP (shown as dashed lines). As
we discuss next, our experiments show that, in practice,
the majority of RPs do not offer mechanisms that can
completely revoke the attacker’s access. And even if
such mechanisms were offered by every single RP, the
sheer scale of such a manual revocation process would
render it impractical. Furthermore, the inner workings of
SSO authorization are too complicated for typical users
to comprehend and act upon.

Methodology. We explore the options offered by RPs
for users to remediate account takeover. Resulting from
our investigation we have identified the following actions
that a user can take: (i) logout from IdP, (ii) logout from
RP, (iii) change password for IdP account, (iv) add or
change password for RP account, (v) revoke RP’s access
to IdP account, and (vi) invalidate active RP sessions. We
repeat the attack instantiation process and perform each
of these actions independently, and examine how they
impact the attacker’s access to the RP account. We repeat
the experiment for every single RP.

Results. Unfortunately, our findings paint a very bleak
picture. Out of the 95 RPs we evaluated, only ten (six web,
four iOS) offer some form of session management; for
those RPs the user can lock the attacker out by changing
the IdP password and invalidating all active sessions in the
RP and IdP. In Table 3 we present one of those apps, and
all the others that can somehow affect the attacker’s ability
to maintain access to the account. For the remaining 71
RPs, the user does not have any course of action to revoke
attacker access to the accounts.

Logging out from the IdP does not affect the attacker
if she is already connected to the RP. The attacker will
have an issue only if she attempts to reconnect after the

Table 3: List of RPs where the attacker’s access is affected
by one of the remediation actions available.

User Action

§ 5 & s & 5
»$ & & § & 8
N $ g g 5 g
g & & s £ ;
Service < & g £ 4 @
Tinder v v X N/A X N/A
Zoosk v v v X X N/A
Skout v v X v X N/A
GetDown X v X v v N/A
Meetme v v X v X N/A
Hookup X v X v v N/A
Down v v X N/A X N/A
GoodReads v/ v v v s v
Yelp v v v X v/ NA
Expedia v v X X X N/A
Kayak v 4 vIX vIX vIX N/A
HomeAway v v v v X N/A
Wish X v X N/A v N/A
Cartwheel v v v N/A v N/A
Geek X v X N/A v N/A

Attacker maintains access: v | Attacker loses access: X

RP cookie has expired. Only five of the web RPs have
short-lived sessions that could pose an obstacle. It is
important to note that for Facebook, the default option
presented when changing the password does not affect
the attacker. However, we assume a more cautious user

that selects the option to log out from all active sessions.

Below we provide more details on two interesting cases.
GoodReads. Revoking RP access and logging out from
all active sessions logs the attacker out from the web
version. The attacker still maintains access in the app.
Kayak. The attacker retains partial read access to the
account no matter what actions are taken.

7 Single Sign-Off

Prevalent SSO schemes do not provide functionality for an
IdP to universally revoke access to all RP accounts created
or accessed from a compromised IdP account. Since such
a scenario is not covered by the current OAuth and OpenlD
specifications,’ it is crucial to develop a mechanism for
mitigating this threat.

We present a protocol for universal access revocation
designed to enable post-compromise remediation of IdP
account hijacking. While we consider the implementation
of the single sign-off protocol as part of our future work,
we present our current design to kickstart a discussion
within the security community on this inherent limitation

of SSO and a first step in addressing this significant threat.

SThe SAML specification describes Single Logout, however it is
difficult to implement and breaks under common run time issues [6]
and lacks support by major libraries like Shibboleth [38]. Also, it is
ineffective when the attacker has a different IdP session from the user [9]
(e.g., attacker connects to IdP with user’s password). There is a draft
specification for IdP-initiated logout for OpenID Connect that is under
development. We discuss this in Section 7.2.

mmm User access
= Hijacking
§ BE Authentication revocation

l

ﬂ User Devices

Identity Provider

0 ‘y’
X o

: Relying Parties

Figure 8: Simplified workflow of an SSO account hijack-
ing attack and the subsequent access revocation.

Universal revocation. Figure 8 presents the workflow
of the hijacking attack and the subsequent steps of the
single sign-off universal access revocation protocol. For
ease of presentation, we describe a simplified version of
the SSO authorization process.

© The user creates an account on the IdP and connects
from multiple devices by supplying her credentials. This
has populated all the required cookies in the respective
browsers and apps on each device, allowing the user to
seamlessly access the account in the future without the
need to reauthenticate.

@ @ The user visits various sites/apps that support
SSO with that IdP, and creates accounts associated to her
IdP account through SSO. These services also populate
her devices with the required cookies.

© The attacker hijacks the user’s IdP account through
any of our threat model scenarios.

@ @ The attacker visits the relying parties and lever-
ages the single sign-on functionality to gain access to the
user’s accounts on those web services and mobile devices.
Accordingly, all the required cookies for connecting to the
accounts will be populated in the attacker’s browser and
apps. The attacker now has the same level of access as
the user, and will be able to freely access any information
or account functionality offered by the RPs. The attacker
may also pre-emptively create accounts on other RPs, as
described in Section 5.

© After realizing that her account on the IdP has
been compromised, the user connects to her account and
initiates the single sign-off revocation process in the IdP.
This will first require the user to change her password
on the IdP and complete a two-factor authentication step,
e.g., over SMS, if it is enabled for the account. Then it
will simultaneously invalidate all active IdP sessions on

all connected devices.

© The IdP maintains a list of RPs that have completed
authentication or authorization over SSO for that account
and revokes their access permission. As aforementioned,
this does not sever both edges of the two-link chain created
by SSO. To prevent the attacker from having access to
the user’s RP accounts, the IdP also issues Authentication
Revocation Requests to all the RPs that are associated
with that account.

@ Once an RP receives a valid Authentication Revoca-
tion Request for a specific user account from a supported
IdP, it logs out active sessions on all the connected devices,
and invalidates all access tokens. The user’s accounts on
the RPs will be temporarily inaccessible until the user
successfully reauthenticates through an SSO process, and
will require the user to set a new password (if the RP
supports passwords). This also works against the email
disassociation preemptive account hijacking attack (Sec-
tion 5). However, it will not work against the account
linking attack (Section 4), and RPs should never imple-
ment such functionality. For cases where the RP is also
an IdP (Section 3), it will in turn issue Authentication
Revocation Requests to all the relying parties that are
associated with that user account.

7.1 OpenlD Connect Auth. Revocation

Here we detail our proposed backwards-compatible ex-
tension to OpenID Connect to support single sign-off by
adding support for authentication revocation. To ease
implementation, our extension adds a single callback
endpoint to each RP and uses standard OpenID Connect
messages and data structures.

Client Registration. RPs register with IdPs by sending
JSON containing client metadata via HTTP POST to the
Client Registration Endpoint [35, § 3.1]. This metadata in-
cludes the client name and URIs for redirection callbacks
used as part of the authentication flow (Section 2). Our ex-
tension adds an authentication revocation URI that the IdP
uses to notify the RP that a user’s authentication has been
revoked and user sessions should be expired. The revoca-
tion URI must use TLS. We extend the Client Registration
Request [35, § 3.1] to include an additional revocation
URI After successful registration, the Client Registration
Endpoint returns JSON containing, among other fields, a
client_id value which uniquely identifies the RP [35,
§ 3.2]. The client_id is used as an audience identifier
in the standard OpenID Connect ID Token [36, § 2] and in
the Revocation Token described below. Listing 1 depicts
an example client registration request.

Authentication Revocation. Once a user regains con-
trol of her IdP account and initiates the single sign-off
procedure, the IdP will notify all the RPs for which ID To-
kens have been issued, unless the token has already expired,
as well as revoke all relevant Refresh Tokens. The IdP

Listing 1: Example Client Registration Request

{"client_name": "Example Client",

"redirect_uris":
["https://client.example.org/callbackl"”,
"https://client.example.org/callback2"],
"revocation_uri":
"https://client.example.org/revocation",
// Other metadata.

Listing 2: Example Revocation Token

{"iss": "https://server.example.org",
"sub": "24400320",

"aud": "s6BhdRkqt3",

"exp": O,

"iat": 1510873662 }

will send JSON containing a Revocation Token to the
revocation URI specified during Client Registration.

The Revocation Token is a JSON Web Token [24]
containing all of the required claims for an ID Token [36,
§ 2]. Specifically, the Revocation Token contains the
issuer identifier (iss) which identifies the IdP; the subject
identifier (sub) which—coupled with the issuer identifier—
uniquely identifies the user; the audience (aud) whose
value contains the client_id for the RP; the expiration
time (exp) whose value must be 0; and the time the
JWT was issued (iat). The Revocation Token must
be signed (and optionally encrypted) using a JSON Web
Signature [23] (and optionally JSON Web Encryption [25])
in the same manner, using exactly the same algorithm and
keys as the standard ID Token [36, § 2]. Listing 2 shows
an example of a Revocation Token.

Upon receiving an Authentication Revocation Request,
the RP validates the Revocation Token using the procedure
for validating ID Tokens [36, § 3.1.3.7]. If valid, the RP
logs that user out of all active sessions, e.g., by expiring
all authentication cookies in the user’s browsers. The RP
responds to a valid Authentication Revocation Request
with an HTTP 200 OK status code and to an invalid
request with an OAUTH 2 error response [20, § 5.2]. If
the RP is itself an IdP, after receiving a valid request, it
sends Authentication Revocation Requests to its own RPs.
Listing 3 gives an example of our proposed Authentication
Revocation Request. The revocation_tokenis a signed
JSON Web Token [24]. The line breaks are for visual
reasons only. The signature may be verified using the
example ECDSA P-256 key given in the JWS standard [23,
Appendix A.3].

7.2 Alternative Proposal

In independent work, Jones and Bradley [22] describe
a back-channel logout mechanism for OpenID Connect.
Similar to our proposed Authentication Revocation Re-
quest, their approach uses a signed JSON Web Token sent
from the IdP to the RP as an HTTP POST request. The

Listing 3: Example Authentication Revocation Request

POST /revocation HTTP/1.1
Content-Type: application/json
Host: client.example.org

{
"revocation_token":
"eyJlraWQiOiJTUOIMZiIsImFsZyI6IkVTMjU2In0. ey
Jpc3MiOilodHRwczovL3NlcnZlci51leGFtcGx1Lm9y
ZyIsInN1YiI6IjIONDAwMzIwIiwiYXVkIjoiczZCaG
RSa3FOMyIsImV4cCI6MCwiaWFOIjoxNTEwODczNjYy
£Q.GfUWDTJ -kWFHQ09QyYAkBhv£Ie02087ji8jUwN1
K1jhMiHRGZxFp2m-kF6LVLkMBI08Q952djgNr7IQUF
YS_aw"
}

two designs are quite similar with a few key differences
that we highlight in this section.

Prior work shows that developers often fail to under-
stand the full implications of security mechanisms in
practice [26, 39]. This suggests that new security mech-
anisms should contain as few variants and options as is
practicable. Following this principle, we explicitly opted
for a straightforward design that minimizes the imple-
mentation burden and avoids optional features that may
lead to implementation inconsistencies. In contrast, the
back-channel logout draft contains several options as well
as implementation choices about which user sessions are
logged out.

Specifically, the back-channel logout specification draft
states that “Refresh tokens with the offline_access
property normally SHOULD NOT be revoked” and that an
open issue is whether to define another optional parameter
that would signal that offline_access tokens should
be revoked. If such a parameter is not defined, then there
is potential for attackers to maintain access to the user’s
accounts through such tokens. The potential risk of this
situation is exacerbated by the frequency of access control
flaws on the web [41]. If such a parameter is defined, the
increased complexity of the specification increases the
risk of incorrect and inconsistent implementations across
RPs. In contrast, we propose that all user sessions be
logged out and refresh tokens revoked.

The back-channel logout proposal is also more flexible
than our proposal in that it allows the IdP to specify
which user sessions at the RP are to be terminated. Our
proposal explicitly states that all active sessions on all
devices must be terminated. Although the flexibility of
terminating single sessions might be useful under normal
operations, it increases the implementation complexity
and the likelihood of improper deployment. Offering a
user multiple options for session termination may lead
to incomplete post-compromise remediation if the user
makes the wrong choices.

The similarity of the back-channel logout proposal and
our proposal suggests that both approaches are substan-
tially correct. Our findings in this work demonstrate the

need for a standardized, universal authentication revo-
cation mechanism, be it our proposal, the back-channel
logout proposal, or some other related approach. Al-
though the back-channel logout proposal is a concrete—
and much-needed—step toward mitigating the threat of
IdP compromise, we believe a simple design with little
flexibility is preferable.

8 Limitations and Discussion

SSO coverage. Our crawler attempts to recognize com-
mon SSO implementation methods, but developers may
use arbitrary methods that it does not recognize or support
IdPs that are not in our list. As such, we believe that our
results constitute a lower bound but offer a significant
step toward better understanding the SSO ecosystem and
provide a valuable quantification of SSO adoption.

Single sign-off. An attacker could potentially initiate
the revocation process and shut the user out of all RPs.
However, apart from the user becoming aware of the
attack, the attacker is automatically locked out of all the
RP accounts and the user can initiate an account recovery
process in the IdP. As such, the attacker actually lacks
the incentives to do this. Furthermore, from the users’
perspective, temporary lockout is preferable to attackers
maintaining account access. Thus, our mechanism offers
aremediation strategy against a massive security threat for
which users currently lack a defense, and presents benefits
that significantly outweigh the potential inconvenience.

Disclosure. The severity of our attacks necessitates
their disclosure to the affected parties. We submitted a
detailed report to Facebook which led to the subsequent
fix of the cookie exposure. We have also notified most of
the RPs from our experiments, and provided a description
of our presented attacks. As some RPs lack contact info,
we have not been able to contact all of them.

9 Related Work

Previous work has extensively demonstrated how web ser-
vices fail to correctly implement SSO in practice and also
conducted formal analysis of the security guarantees of
existing protocols. Wang and Chen studied popular SSO
implementations and identified flaws that allowed attack-
ers to gain access to user accounts [46]. Zhou and Evans
built SSOScan an automated vulnerability checker that
analyzed web applications that used Facebook SSO [53].
In [49] the authors presented OAuthTester, an adaptive
model-based testing framework for automatically evalu-
ating implementations of OAuth 2.0 systems in practice.
They also explored how SSO implementation flaws in dual
role IdPs could lead to the amplification of attacks. Bai
et al. [3] also demonstrated an automated analysis tool
for discovering flaws in SSO implementations. Sun and
Beznosov provided an empirical analysis of the implemen-
tation flaws of three major OAuth identity providers [42].

Shernal et al. [37] presented a study on the implementation
of OAuth 2.0 in popular sites and their vulnerability to
CSREF attacks due to the non-compliant implementations.
Zuo et al. [54] created a tool for detecting server-side
access control implementation flaws.

Fett et al. [15] presented a formal analysis of the OAuth
2.0 specification, and were able to demonstrate four novel
attacks against OAuth. The authors had previously ex-
plored the privacy limitations of existing SSO schemes
and proposed SPRESSO, a privacy-preserving SSO sys-
tem [16] with provable properties [17]. Sun et al. [43]
explored SSO from the perspective of users and identified
usability challenges they faced as well as their privacy
concerns that stem from RPs accessing their information
on the IdP.

Wang et al. [47] uncovered significant flaws in three
SDKs provided by major 1dPs, by applying a system-
atic process for uncovering implicit assumptions required
for ensuring security. Their analysis showed how these
assumptions are violated by app developers in practice,
leading to web applications that do not satisfy the required
security properties. Recently, Mainka et al. [29] presented
a systematic analysis of attacks against OpenID Connect,
and demonstrated how techniques used against other SSO
systems could be adapted to also attack OpenID Connect.
The authors had previously evaluated OpenlD and discov-
ered novel attacks that would allow a malicious IdP to
compromise the security of all accounts on a vulnerable
service provider [28].

Hu et al. [21] focused on social networks and common
API designs that leverage OAuth 2.0 for providing ac-
cess. Their evaluation highlighted an inherent limitation
of OAuth’s design, which enables an app impersonation
attack that can lead to unauthorized data access. Yue
conducted a user study to demonstrate how SSO could
lead to more effective phishing attacks [50], while Zhao
et al. [51] explored how to make the appearance and
functionality of SSO phishing websites reflect those of
the legitimate websites. Recently, Farooqi et al. [14]
studied how collusion networks in Facebook exploit pop-
ular apps with weak security settings to obtain OAuth
tokens. Sivakorn et al. [41] demonstrated how the lack
of ubiquitous HTTPS resulted in the exposure of HTTP
cookies granting attackers access to sensitive user data
and account functionality in major services.

In contrast to prior work on design and implementation
issues of SSO, we explore the security risks surround-
ing the deployment of SSO, which would persist even if
implementations were complete and correct. Thus, our
study complements prior work by highlighting the ramifi-
cations of using SSO alongside traditional local account
management techniques.

10 Conclusions

While the SSO paradigm enables seamless integration and
effortless navigation, it also epitomizes the single point of
failure which the Internet’s architects have strived to avoid
since its inception. And even though this property is not
a vulnerability in and of itself, we have shown that SSO
as it is currently implemented exposes users to numerous
dangerous and stealthy attacks, some of which extend to
services not connected to the original provider. Our novel
preemptive account hijacking technique and the feasibility
of long-term access to victims’ accounts highlight the
obstacles to mitigating these attacks and revoking an
adversary’s access. Even worse, the vast majority of RPs
lack functionality for victims to terminate active sessions
and recover from such an attack. Even if such functionality
were available, the scale of such a remediation would
render it a Sisyphean task for users. Guided by our
findings and the significant threat posed by these attacks,
we designed single sign-off, an access revocation extension
to OpenlD Connect that enables users to efficiently recover
from an IdP account hijack. We hope this will help initiate
a discussion within the community, and kick-start efforts
to address the shortcomings of existing SSO schemes.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful feedback. We would also like to thank Yan Xuan,
Himanshu Sharma and the Academic Computing and
Communications Center at UIC for their technical support
throughout this project. Finally, we would like to thank
Michalis Diamantaris for his assistance. This material is
based in part upon work supported by the U.S. National
Science Foundation under award CNS-1409868 and a gift
from the Mozilla Foundation. Any opinions, findings,
conclusions, or recommendations expressed herein are
those of the authors, and do not necessarily reflect those
of the US Government or the NSF.

Data availability

The dataset from our SSO coverage study can be found at:
https://www.cs.uic.edu/~sso-study/

References

[1] Araca, F., anp van Oorschort, P. Device finger-
printing for augmenting web authentication: classi-
fication and analysis of methods. In Proceedings of
ACSAC 2016 (Dec. 2016).

[2] Ancuro, J., AND ORTLIEB, M. “WTH..!?!” experi-
ences, reactions, and expectations related to online
privacy panic situations. In Proceedings of SOUPS
2015 (June 2015).

[3] Bar, G., LE1, J., MENG, G., VENKATRAMAN, S. S.,
SAXENA, P., Sun, J., Liu, Y., AND Dong, J. S. Auth-

https://www.cs.uic.edu/~sso-study/

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

scan: Automatic extraction of web authentication
protocols from implementations. In Proceedings of
NDSS 2013 (Feb. 2013).

BARrTH, A., JacksoN, C., AND MiTcHELL, J. C. Robust
defenses for cross-site request forgery. In Proceed-
ings of CCS 2008.

BiLGE, L., STRUFE, T., BALZAROTTIL, D., AND KIRDA,
E. All your contacts are belong to us: Automated
identity theft attacks on social networks. In Proceed-
ings of WWW 2009 (Apr. 2009).

Browinski, G. Saml single logout - what you
need to know. https://www.portalguard.
com/blog/2016/06/20/saml-single-logout-
need-to-know/, June 2016.

BurszrElN, E., BeEnko, B., MaArcoLris, D.,
PieTrASZEK, T., ARCHER, A., AQUINO, A., PITsIL-
LIDIS, A., AND SAVAGE, S. Handcrafted fraud and
extortion: Manual account hijacking in the wild. In
Proceedings of IMC 2014 (Nov. 2014).

BUTLER, E. Firesheep. http://codebutler. com/
firesheep, 2010.

CA TecHNoLoGIEs. Single logout overview (SAML
2.0). https://docops.ca.com/ca-single-
sign-on/12-52-sp2/en/configuring/
partnership-federation/logging-out-of-
user-sessions/single-logout-overview-
saml-2-0/, Sept. 2017.

Cao, Q., Yang, X., Yu, J., anp PaLow, C. Un-
covering large groups of active malicious accounts
in online social networks. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), CCS ’14.

Das, A., BoNNEAU, J., CAESAR, M., Borisov, N.,
AND WaNG, X. The tangled web of password reuse.
In Proceedings of NDSS 2014 (Feb. 2014).

Duaamua, R., AND Dusseaurr, L. The seven flaws
of identity management: Usability and security
challenges. IEEE Security & Privacy 6, 2 (2008).

Douckeur, J. R. The sybil attack. In Revised Papers
from the First International Workshop on Peer-to-
Peer Systems (2001), IPTPS °01.

FAaro0QI1, S., ZAFFAR, F., LEONTIADIS, N., AND
SHAFIQ, Z. Measuring and mitigating oauth access
token abuse by collusion networks. In Proceedings
of IMC 2017 (Nov. 2017).

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

Fert, D., KiUstERS, R., AND ScamiTz, G. A com-
prehensive formal security analysis of oauth 2.0. In
Proceedings of CCS 2016.

FerT, D., KUsTERS, R., AND Scumitz, G. Spresso:
A secure, privacy-respecting single sign-on system
for the web. In Proceedings of CCS 2015.

Fert, D., KUsTERS, R., AND ScumiTZ, G. An expres-
sive model for the web infrastructure: Definition
and application to the browser id sso system. In
Proceedings of IEEE Symposium on Security and
Privacy 2014 (May 2014), IEEE, pp. 673-688.

GooGLE. Puppeteer. https://github.com/
GoogleChrome/puppeteer, 2017.

Hao, S., BorcoLTE, K., NikiForAKIS, N., STRINGH-
INI, G., EGeLE, M., EuBanks, M., Kress, B., AND
VigNa, G. Drops for stuff: An analysis of reshipping
mule scams. In Proceedings of CCS 2015 (Oct.
2015), ACM, pp. 1081-1092.

Harprt, D. The OAuth 2.0 authorization framework.
RFC 6749, RFC Editor, Oct. 2012.

Hu, P, Yang, R., L1, Y., aND Lau, W. C. Application
impersonation: problems of oauth and api design
in online social networks. In Proceedings of COSN
2014, ACM.

JonEs, M. B., AND BRADLEY, J. OpenlD Connect
Back-Channel Logout 1.0 - draft 04, 2017.

JonEes, M. B., BRADLEY, J., AND SAKIMURA, N. JSON
Web Signature (JWS). RFC 7515, RFC Editor, May
2015.

JoNEs, M. B., BRADLEY, J., AND SAKIMURA, N. JSON
Web Token (JWT). RFC 7519, RFC Editor, May
2015.

JonEs, M. B., aAND HiLDEBRAND, J. JSON Web
Encryption JWE). RFC 7516, RFC Editor, May
2015.

KrancH, M., AND BonnNEAU, J. Upgrading HTTPS
in mid-air: An empirical study of strict transport
security and key pinning. In 22nd Annual Network
and Distributed System Security Symposium, NDSS
(2015).

KRreBs, B. How cybercrooks put the beatdown on my
beats. https://krebsonsecurity.com/tag/
amazon-hacked-seller-account/, Apr. 2017.

Mainka, C., MLADENOV, V., AND SCHWENK, J. Do
not trust me: Using malicious idps for analyzing
and attacking single sign-on. In Proceedings of
EuroS&P 2016 (Mar. 2016), IEEE, pp. 321-336.

https://www.portalguard.com/blog/2016/06/20/saml-single-logout-need-to-know/
https://www.portalguard.com/blog/2016/06/20/saml-single-logout-need-to-know/
https://www.portalguard.com/blog/2016/06/20/saml-single-logout-need-to-know/
http://codebutler.com/firesheep
http://codebutler.com/firesheep
https://docops.ca.com/ca-single-sign-on/12-52-sp2/en/configuring/partnership-federation/logging-out-of-user-sessions/single-logout-overview-saml-2-0/
https://docops.ca.com/ca-single-sign-on/12-52-sp2/en/configuring/partnership-federation/logging-out-of-user-sessions/single-logout-overview-saml-2-0/
https://docops.ca.com/ca-single-sign-on/12-52-sp2/en/configuring/partnership-federation/logging-out-of-user-sessions/single-logout-overview-saml-2-0/
https://docops.ca.com/ca-single-sign-on/12-52-sp2/en/configuring/partnership-federation/logging-out-of-user-sessions/single-logout-overview-saml-2-0/
https://docops.ca.com/ca-single-sign-on/12-52-sp2/en/configuring/partnership-federation/logging-out-of-user-sessions/single-logout-overview-saml-2-0/
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://krebsonsecurity.com/tag/amazon-hacked-seller-account/
https://krebsonsecurity.com/tag/amazon-hacked-seller-account/

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Mainka, C., MLADENOV, V., SCHWENK, J., AND
WicH, T. Sok: Single sign-on security—an evaluation
of openid connect. In Proceedings of EuroS&P 2017
(Aug. 2017).

Motoyama, M., LEvcHENKO, K., KaNicH, C., Mc-
Coy, D., VoeLkER, G. M., AND SAavAGE, S. Re:
Captchas: Understanding captcha-solving services
in an economic context. In Proceedings of USENIX
Security 2010 (Aug. 2010).

ONAoLAPO, J., MaRICONTI, E., AND STRINGHINI, G.
What happens after you are pwnd: Understanding
the use of leaked webmail credentials in the wild. In
Proceedings of IMC 2016 (Nov. 2016).

PANTHER, L. Cyber crooks hack into amazon ac-
counts to place pricey orders and steal the goods.
Mirror (July 2016).

PearMAN, S., THomas, J., NaEINg, P. E., HaBis, H.,
BAUER, L., CHRISTIN, N., CRANOR, L. F., EGELMAN,
S., anD ForaGeT, A. Let’s go in for a closer look:
Observing passwords in their natural habitat. In
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (2017).

PoLakis, 1., ARGYROS, G., PeTSIOS, T., SIVAKORN,
S., anp KeromyTis, A. D. Where’s wally?: Precise
user discovery attacks in location proximity services.
In Proceedings of CCS 2015 (Oct. 2015).

SakiMURA, N., BRADLEY, J., aAND JonEs, M. B.
OpenlID Connect Dynamic Client Registration 1.0
incorporating errata set 1, Nov. 2014.

SakiMURA, N., Brabprey, J., Jones, M. B,
DE MEDEIROS, B., AND MoORTIMORE, C. OpenlD
Connect Core 1.0 incorporating errata set 1, Nov.
2014.

SHERNAN, E., CARTER, H., TiaN, D., TRAYNOR,
P, anp ButLEr, K. More guidelines than rules:
Csrf vulnerabilities from noncompliant oauth 2.0
implementations. In Proceedings of DIMVA 2015
(July 2015).

SHIBBOLETH CONTRIBUTORS. Sloissues.
https://wiki.shibboleth.net/confluence/
display/CONCEPT/SLOIssues, 2017.

SivakorN, S., KeromyTis, A. D., AND PoOLAKIS,
J. That’s the way the cookie crumbles: Evaluating
https enforcing mechanisms. In Proceedings of the
2016 ACM on Workshop on Privacy in the Electronic
Society (2016), WPES ’16.

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

S1VAKORN, S., PoLAKIs, 1., AND KErOMYTIS, A. D. 1
am robot: (deep) learning to break semantic image
CAPTCHAs. In Proceedings of EuroS&P 2016
(Mar. 2016).

S1VAKORN, S., PoLAKis, J., AND KEroMYTIS, A. D.
The cracked cookie jar: HTTP cookie hijacking and
the exposure of private information. In Proceedings
of IEEE Symposium on Security and Privacy 2016
(May 2016).

Sun, S.-T., AND Beznosov, K. The devil is in the
(implementation) details: An empirical analysis of
oauth sso systems. In Proceedings of CCS 2012.

Sun, S.-T., Pospisir, E., MusLukHOV, 1., DINDAR,
N., HaAwkey, K., AND Beznosov, K. What makes
users refuse web single sign-on?: An empirical
investigation of openid. In Proceedings of SOUPS
2011 (July 2011).

Traomas, K., L1, F., ZanD, A., BARRETT, J., RANIERI,
J., INnvErRNIZZI, L., MARKOV, Y., CoMANEScU, O.,
ErANTI, V., Moscickl, A., MARGoLIS, D., PAXSON,
V., anDp BurszrtEIN, E. Data breaches, phishing,
or malware? understanding the risks of stolen cre-
dentials. In Proceedings of CCS 2017 (Oct. 2017),
ACM.

Wang, D., ZHang, Z., WaNG, P., YaN, J., AND
Huang, X. Targeted online password guessing:
An underestimated threat. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), CCS ’16.

Wang, R., anp CHEN, S. Signing me onto your
accounts through facebook and google: a traffic-
guided security study of commercially deployed
single-sign-on web services. In Proceedings of
1IEEE Symposium on Security and Privacy 2012.

WaNG, R., ZHou, Y., CHEN, S., QADEER, S., EVANs,
D., aND GUrEvICH, Y. Explicating sdks: Uncovering
assumptions underlying secure authentication and
authorization. In Proceedings of USENIX Security
(Aug. 2013).

WiKIPEDIA CONTRIBUTORS. List of oauth
providers. https://en.wikipedia.org/wiki/
List_of_ OAuth_providers, 2017.

Yang, R, L1, G., Lau, W. C., Zuang, K., aAnp Hu,
P. Model-based security testing: An empirical study
on oauth 2.0 implementations. In Proceedings of
ASIACCS 2016 (May 2016), ACM, pp. 651-662.

Yug, C. The devil is phishing: Rethinking web
single sign-on systems security. In Proceedings of
LEET 2013 (Aug. 2013), USENIX.

https://wiki.shibboleth.net/confluence/display/CONCEPT/SLOIssues
https://wiki.shibboleth.net/confluence/display/CONCEPT/SLOIssues
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers

[51]

[52]

[53]

[54]

Zuao, R., Jonn, S., Karas, S., BusserLr, C.,
RoBERTs, J., Six, D., Gaverr, B., aNnD Yug, C.
The highly insidious extreme phishing attacks. In
Proceedings of ICCCN 2016 (Aug. 2016), IEEE.

ZHENG, X., JIANG, J., L1aNG, J., DuaN, H., CHEN, S.,
Wan, T., AND WEAVER, N. Cookies lack integrity:
Real-world implications. In USENIX Security 2015
(Aug. 2015).

Zuou, Y., AND Evans, D. SSOScan: Automated
testing of web applications for single sign-on vul-
nerabilities. In Proceedings of USENIX Security
2014.

Zuo, C.,Zuao, Q., anp LIN, Z. Authscope: Towards
automatic discovery of vulnerable authorizations in
online services. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security (Oct. 2017), CCS ’17.

A List of Services

In Table 4 we detail all the web and mobile RPs that we
audited throughout our experiments.

Table 4: Complete list of all web services and mobile
apps that we audited during our experiments.

Service Platform Service Platform
IMDB web Uber i0OS
Pinterest web Tinder iOS
Imgur web Yelp i0S
NY Times web Expedia iOS
Booking web TripAdvisor i0S
Wikihow web Kayak H{ON
Guardian web GasBuddy i0S
‘WashingtonPost web Hotels.com i0OS
BlastingNews web HomeAway i0OS
Quora web AirBnB i0S
Mediafire web Wish iOS
Hclips web OfferUP i0S
Gfycat web LetGo iOS
9gag web Groupon i0S
FoxNews web AliExpress iOS
LiveJournal web RetailMeNot iO0S
WittyFeed web CartWheel i0OS
Zillow web Shein iOS
Onedio web Geek i0S
Giphy web Smiles ioS
Taringa web Clover i0S
GoodReads web Zoosk H{ON
Fiverr web Bumble iO0S
Asos web Skout i0S
Teepr Deals web Coffee Meets Bagel i0OS
4shared web Get Down i0S
USArtToday web InstaMessage i0S
TheFreeDictionary web HUD i0S
WashingtonStreetJournal ~ web MocoSpace iOS
800 Contacts web Happn i0S
IMDB iOS MeetMe iOS
Pinterest iOS Mingle2 iOS
Imgur iOS Hookup i0OS
NY Times iOS Mingle i0OS
Booking iOS Down i0S
The Guardian iOS Mingle H{ON
Washington Post iOS Tagged i0S
Quora iOS Sudy iOS
Mediafire iOS Ovia i0S
9gag iOS Pregnancy+ i0OS
LiveJournal iOS 800 Contacts iOS
Wittyfeed iOS Nurse Grid i0S
Zillow iOS NCLEX RN ioS
Onedio iOS Quora Android
Giphy iOS Uber Android
Goodreads iOS Tinder Android
Fiverr iOS Ovia Android
Asos iOS Pregnancy+ Android
Thefreedictionary iOS Booking Android
Foursquare iOS Mediafire Android
Realtor iOS Lyft Android
Trulia iOS Yelp Android
MapMyWalk iOS Groupon Android
4shared iOS Skout Android

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Single Sign-On Schemes
	2.2 Threat Model
	2.3 Network Traffic Study

	3 Single Sign-On Prevalence
	4 Relying Party Account Takeover
	5 Preemptive Account Hijacking
	6 Post-Compromise Remediation
	7 Single Sign-Off
	7.1 OpenID Connect Auth. Revocation
	7.2 Alternative Proposal

	8 Limitations and Discussion
	9 Related Work
	10 Conclusions
	A List of Services

