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Abstract—Embedded devices are designed to cover many
possible use cases. In practice only a small subset of features may
be used in a given deployment. As devices age, some features
turn out to be security risks. We address these problems by
creating Sentinel, a secure mode profiler for embedded devices.
Sentinel uses a bus tapping interface to derive a partial control
flow graph during device execution. This graph represents the
subset of device modes actually observed during use. The control
flow graph is generated without any prior knowledge of the device
or its software and constitutes a security profile which can be
used to audit device execution in order to detect attacks. The
profile can be easily enforced by existing bus monitors with minor
modifications.

Index Terms—Computer Security; Internet of Things

I. INTRODUCTION

With the advent of the Internet of Things, today’s embedded

devices have become increasingly connected [1–3]. One of

the major benefits of this connectivity has been realized in

industrial networks, where device measurements can now be

taken remotely. Gone are the days when technicians would

carefully transcribe analog readings produced by disparate

equipment onto paper charts. Modern industrial networks

leverage technology in order to minimize the number of times a

technician must perform a manual reading or use paper records.

Many industrial networks contain a mix of general-purpose

computers and mission-critical embedded devices [4–8].

These devices are often installed directly by an agent of

the manufacturer or by field technicians specifically trained

by these agents. There are numerous examples of embedded

devices containing special modes that are meant to be used

only by these agents during setup [9, 10]. Unfortunately,

manufacturers still produce devices that do not have secure

default configurations [11–13] and in many cases these modes

can also be used by attackers to maliciously reconfigure and

attack the device [12, 13].

In addition to being vulnerable to remote attacks like any

other network-facing device, many embedded systems are

vulnerable to physical attacks. Industrial equipment must often

be deployed in the field. In such an environment, the equipment

owner typically has little control over who interacts with the

devices. However, until recently, most manufacturers have

focused on reliability and usability rather than on security.

There are many potential negative consequences of an attacker

tampering with industrial equipment: the attacker could degrade

performance, tamper with measurements, disable functionality

or, in some cases, even cause direct bodily harm [14, 15].

Physical security in industrial networks is a serious problem

that does not always receive the attention that it deserves.

When we consider physical attacks in conjunction with remote

attacks, we see that many embedded devices have enormous

attack surfaces.

To further complicate matters, many embedded devices are

designed to have extraordinarily long lifespans. For example, a

medical infusion pump model might be supported by its manu-

facturer for 10–15 years [16]. This creates several problems. As

security techniques constantly improve, legacy devices are often

left behind. In some industries, such as healthcare, embedded

devices may not even be able to receive software upgrades

without the update first going through a lengthy and expensive

review process [17]. Due to this review process, manufacturers

sometimes issue recommendations against continuing to use

a particular feature in lieu of a firmware update that actually

removes the mode [18]. Furthermore, industrial devices are

designed with longevity in mind and they are often designed

to be sold to a broad spectrum of customers. Devices often

contain a wide variety of modes and features in order to meet

the requirements of all possible customers. Most customers

will only use a subset of these possible features and modes.

In many cases actual usage of the device may fit a very

narrow profile. Despite the extensive work looking at securing
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embedded devices against exploits [19–29] there has been little

work on how to build and enforce security profiles that cover

a device’s typical usage patterns, and how to disable insecure

device features without requiring a firmware update.
This new work would be a useful complement to exist-

ing work on defense against exploits, as it would allow a

manufacturer to dramatically reduce the attack surface on an

embedded device by allowing the device to be locked down to

a limited profile during deployment. For example, on devices

with a configuration mode, it would be useful to disable 1 the

configuration mode while the device is deployed in the field if

the device should only be reconfigured when it is offline [30].

Similarly, on devices that use interfaces for debugging purposes,

it would be useful to disable these interfaces when the device

is not being debugged [31–33]. On legacy devices with telnet

access, it may be useful to disable telnet altogether [34–36].

Note that these three examples all come from vulnerabilities

reported in actual industrial embedded devices. Existing exploit

mitigation techniques would not adequately address these issues

but a device for building and enforcing device profiles as

described in this work would.
In many situations firmware updates are not available for a

given device or they cannot be feasibly pushed to devices in

the field. For example, some infusion pumps that we examined

contain socketed ROMs. Other deeply embedded devices may

not be firmware-updatable at all. If there is no remote firmware

update functionality in a given device then the firmware needs

to be upgraded by a field tech. This becomes a problem if

the firmware needs to be updated by hand every time a new

vulnerability is discovered, especially since these devices may

have 10-20 year lifespans. In these cases, having the ability to

disable vulnerable modes (such as telnet modes found in devices

built in the early 2000s) without requiring a recall would greatly

improve the security posture of the underlying device, even in

the face of an uncertain future security landscape.
To address these problems we create Sentinel, a secure

device profiler for non-SoC (System-on-Chip) based embedded

systems with external memory busses. Sentinel significantly

increases the physical security of target devices by using a

bus tapping interface to derive a partial control flow graph

representing a subset of functionality of the attached embedded

system. This control flow graph is built from device execution

traces taken while running the device through the desired

functions. Anything in the control flow graph is considered

an allowable action within the device’s security profile while

any action not in the security profile is considered a security

violation. Sentinel builds its partial control flow graph by

monitoring the memory bus directly. It is therefore a passive

observer to normal device operations. Its profiles are enforced

using one of the existing snooping-based runtime enforcers.

Because of its passive design, Sentinel is able to build profiles

without interfering with the normal operation or timing of

the attached device. Similarly, its profiles can be enforced

1Disabling a device feature is one of several possible mitigation techniques
that a Sentinel could be made to support. These techniques are discussed in
more detail in Section IV-E.

without any additional runtime overhead. Furthermore, Sentinel

is robust even in the face of lossy data.

Sentinel uses a bus tap to extract samples of partial control

flow graphs directly from the address bus of a target device at

runtime. These samples are combined by the device profiler to

recreate the partial control flow graphs corresponding to a set of

desirable device behaviors referred to as security profiles. The

security profiles are designed to be enforced by existing bus

snooping-based control flow integrity techniques [19–21] with

only minimal modifications. Sentinel can thus be thought of

as a combination of a novel bus tap and offline device profiler

combined with one of the snooping-based runtime enforcers

in existence today.

We outline a high-level design for an execution-based

embedded device profiler. We prove its feasibility by using

it to build a security profile of a particularly important type

of embedded device–a medical infusion pump. We test the

utility of the profile by using it to audit an execution trace

taken during a physical attack on the device. We further

outline how we solve difficult problems such as accounting for

interrupt and exception handlers and anticipating instruction

prefetches before looking at how our profiler handles lossiness

using sample size and false positive rate. Finally, we consider

additional uses for Sentinel beyond our novel security profiling

technique.

Threat Model. This work is concerned with attackers that

already have some access to an embedded system. The attackers

may be physical or remote. Their goal is to attempt to access a

feature or mode of the device that is not within its use profile

without detection.

We are interested in embedded devices that perform impor-

tant functions and are complicated enough to have multiple

device modes. These include things like infusion pumps and

other medical devices, certain types of industrial control

systems, automotive control systems and airplane control

systems. Additionally, many of these types of embedded devices

use ROMs [37–42]. Such devices often contain modes that

may be necessary for configuration but that should not be used

in deployment [30–36]. An attacker may wish to exploit such

a weakness in the device in order to maliciously reconfigure

or control the device or tamper with its operation.

Note that we are not concerned with a user physically

disabling a Sentinel. In order to do so the user would need to

disassemble the embedded device and desolder the Sentinel

from the PCB. If an attacker is going to this extent to tamper

with the device then the attacker could also perform numerous

other malicious modifications to the device. Instead, Sentinel

is supposed to sit inside of a device’s casing and detect when

a user uses the normal device interface to enter an undesirable

device mode. This interface may be local or remote.

This work is also not concerned with varied parameter

attacks, in which an attacker attempts to corrupt a value stored

in memory in order to cause a device to perform an undesirable,

but legal, action in a profiled mode. Varied-parameter attacks

are certainly a problem, but they are a different problem than

the device mode problem that we explore in this work and
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thus they require a different solution.

Our Contribution. This work proposes the following signifi-

cant and novel contributions:

1) Dynamically builds partial control flow graph correspond-

ing to device features and modes without any knowledge

of the underlying source code or firmware

2) Audits execution traces to ensure that the device operated

within a given security profile

3) Considers the relationship between number of samples

and false positives when accounting for lossiness

II. RELATED WORK

There has been much previous work looking at memory

bus monitoring in embedded devices [19–21, 43–46]. Some

of this work has used bus monitoring in conjunction with

other techniques to add security to insecure embedded devices

[20, 43, 44] including by using a modified compiler to output

a full control flow graph to be used in conjunction with a bus

monitor to enforce control flow integrity [19–21].

All control-flow related bus monitoring work that we know

of has looked at using the full control flow graph to detect and

prevent remote exploits rather than to limit device functionality.

In contrast, our work dynamically builds partial control flow

graphs that encapsulate specific device functionality. These

partial control flow graphs can be enforced as security profiles

at runtime or they can be used to audit device execution in

order to ensure that an attached device is operating according

to its expected run-time profile.

A. Hardware-Assisted Run-Time Monitoring for Secure Pro-
gram Execution on Embedded Processors

This work [19] is a simulated design for a bus monitoring

circuit that can enforce control-flow integrity on embedded

devices in real-time. The design enforces inter-procedural

control flow, intra-procedural control flow, and instruction

stream integrity. Inter-procedural control flow is accomplished

by storing all procedures in a function call graph that is

translated into a finite-state machine. Whenever the monitor

observes a function call it checks to see whether the call

corresponds to a valid state transition. Intra-procedural control

flow is accomplished through the use of a basic block table.

For each basic block, its two possible successor addresses are

stored (the address of the next basic block depends on whether

or not the branch was taken). Instruction stream integrity is

accomplished by also storing the hash of each basic block

in the basic block table, hashing the instruction stream for

the basic block at run-time, and ensuring that the observed

hash matches the hash stored in the table. The described data

structures are stored in an enhanced executable and are loaded

into a hardware monitor at run-time.

B. A Watchdog Processor to Detect Data and Control Flow
Errors

This work [21] proposes a design for a hardware watchdog

processor for Motorola M68040-based embedded devices.

The watchdog is used for integrity and reliability purposes

rather than for security. The watchdog is implemented as a

custom circuit that is capable of detecting faults caused by

radiations and electromagnetic interferences. These sorts of

faults can cause two types of errors: data errors and control

flow errors. The proposed watchdog processor can thus detect

both types of errors. The watchdog protects against data errors

by implementing a bus protection strategy based on Automatic

Repeat Request. The watchdog protects against control flow

errors by calculating a signature for each branch free block
in the entire binary and storing the signatures for all blocks

offline. At runtime the signature is recomputed and compared

to the stored signature.

C. Vigilare: Toward Snoop-based Kernel Integrity Monitor

Vigilare [44] is a hardware kernel integrity monitor designed

to facilitate integrity checking on operating system kernels (and

hypervisors in particular). Existing hardware-based integrity

monitors used sampling-based bus traffic monitoring schemes

due to implementation-level difficulties that this work purported

to solve. In contrast to the snapshot-based approaches, Vigilare

implements a real-time approach capable of monitoring all

bus-traffic rather than only a limited amount. Vigilare loads

the addresses of important kernel symbols within static regions

from the System.map file and verifies the integrity of the data

at these addresses during device runtime by capturing write

operations to these addresses.

III. BACKGROUND

Background knowledge of several key concepts will aid in

understanding our solution to the problem of building partial

control flow graphs and auditing execution traces.

A. Address Space Layout in Embedded Systems

The memory bus is used to transfer data between the CPU

and a memory device. It is composed of three smaller buses:

an address bus, a data bus, and a control bus. The address bus

specifies the logical address of the memory to access. The data

bus is used to communicate data to or from the memory device.

The control bus is used to tell the memory controller what

type of bus operation is to occur, as well as when an address

or data is latched on the address or data bus, respectively.

Many embedded systems store their firmware on a ROM chip

that is directly mapped into the address space rather than on a

secondary storage such as a hard drive or solid state drive [47].

In such a system the CPU can execute code out of the ROM

by directly loading instructions from its memory addresses.

Additionally, these systems typically contain a RAM that is

also mapped to the address space. Typically RAM and ROM

devices use an internal addressing scheme of linear addresses

starting at address 0x0. Thus, linear addresses seen by the

CPU must be translated into physical addresses used to access

the data in the physical memory device. A memory controller

translates linear addresses into physical addresses.
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B. Instruction Prefeteching

Almost all modern CPU architectures implement some form

of instruction prefetching [48] in order to keep the CPU pipeline

filled with instructions. When the CPU pipeline is empty the

CPU must wait for its next instruction to be fetched from

main memory or from cache. This may be a relatively time

consuming process. Instruction prefetching helps to minimize

how often the CPU must wait on instructions to be fetched. One

of the earliest architectures to implement instruction prefetching

was the Intel 8086, which could linearly prefetch up to six bytes

of instructions [49]. More modern architectures implement

significantly more advanced prefetching algorithms to provide

branch prediction [50] and branch target prediction [51].

C. Interrupt Handling

Most CPU architectures support facilities for handling

exceptions as well as environment-triggered inputs, which

may be triggered in an unpredictable fashion [52]. Such

constructs are signaled to the CPU externally through an

interrupt controller or internally through a software interrupt.

The CPU, upon detecting an exception or an interrupt, will

execute a corresponding handler for the event. The list of all

possible handlers is typically stored as a jump table somewhere

in system memory. The precise location of this interrupt table

is architecture–dependent. When interrupts are triggered the

system will choose what to do based on a combination of

architectural specification and system state. The system may

ignore certain interrupts or delay their handling, or it may

immediately halt execution and jump to the interrupt handler.

In many cases the interrupt handler will return to the previously-

executing code upon completion. In some cases the interrupt

handler may not return at all.

D. Control Flow Integrity

Control flow integrity is a defense technique that can protect

a system against control flow hijacking attacks such a buffer

overflows [53] and return-oriented programming [54]. Control

flow integrity typically protects against such attacks with the

use of a control flow graph generated by the compiler at compile

time. The control flow graph is a graph of all basic blocks

and transitions in a program. This graph is used to generate a

state machine. The program execution is then monitored and

all control flow transitions are checked in accordance with the

generated state machine. If any observed control flow transition

does not correspond to a transition in the control flow graph,

then the monitor will trigger a security violation and halt the

attack.

IV. DESIGN

Sentinel is realized as a compound design consisting of two

orthogonal components: a bus tap and a device profiler. A

fully-deployed Sentinel system would use one of the existing

runtime enforcers defined in the related work section to enforce

a profile. The Sentinel bus tap is connected to an embedded

system’s address and control buses. The bus tap forwards the

start and end addresses of all basic blocks fetched by the CPU

to the device profiler. It accomplishes this by monitoring all

instruction fetches. If it detects a jump between basic blocks

it inherently forwards the jump source and target to the device

profiler. The jump target represents the first address in a new

basic block and the jump source represents the last address in

the previous basic block.

The device profiler receives the list of basic block addresses,

starting with the address of the first basic block fetched by

the CPU, when the device initially boots. It uses these basic

block addresses to construct a full control flow graph of the

observed device execution. Thus, the device profiler receives

device execution traces and constructs a control flow graph

from them. This control flow graph is, by definition, sparse

because any basic block start address is associated with a single

basic block end address, and any basic block has exactly two

possible successors based on whether the jump at the end of

the block is taken. Thus, the device profiler stores this control

flow graph as an adjacency list. Because execution traces are

lossy, the profiler can be run on the concatenation of multiple

execution traces in order to construct a more complete profile.

This is described in more detail in the following sections.

This partial control flow graph represents a security profile.

Any device modes or features that were accessed during

the execution trace will be a part of the security profile,

and therefore will be considered allowable accesses during

subsequent audits or enforcement. Conversely, any features or

modes not in the security profile will be considered anomalous

accesses. The Sentinel prototype that we have constructed can

audit arbitrary execution traces offline in order to determine

whether or not the execution trace violates a given security

profile. Combined with the control-flow based real-time bus

monitors proposed in the prior work [19–21] one could enforce

Sentinel’s security profiles on embedded devices in real-time.

A fully-deployed Sentinel (complete with enforcer) could

either be integrated into existing designs internally or it can

be attached to existing hardware externally. Because Sentinel

is an open design it can be easily modified to fit a variety

of use cases. In our embodiment, Sentinel is designed to be

easily integrated into embedded systems that meet certain

architectural requirements. While it may be possible to modify

the Sentinel design to fit into other types of embedded systems,

we will restrict our discussion to cover only the types of

systems into which Sentinel can currently be integrated with

no modifications.

A. Architectural Requirements

Sentinel can be integrated into any system that meets its

architectural requirements. The Sentinel device profiler is

architecture agnostic as it relies only on the abstraction provided

by the bus tap in order to build the control flow graph. The

Sentinel bus tap, on the other hand, can only be integrated

into embedded devices that meet several basic architectural

requirements. In practice these requirements are minor and

most devices that are not system on chip (SoC) should meet

them. Even SoC devices with additional external memory could
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possibly be made to work with the Sentinel bus tap in a more

limited capacity.

1) External Memory Bus: The bus tap must translate the

raw electrical signals that are sent across the memory bus into

an infinite stream of addresses. Therefore, in order to be a

candidate for Sentinel integration, an embedded system must

fetch its instructions from external memory banks such as

ROM and/or RAM. If an embedded system were to fetch its

instructions from internal memory banks instead (as would be

the case with a SoC), Sentinel would have no way to monitor

the address and control buses. Note that this limitation does

not extend to caches. Sentinel supports caches as it monitors

the data path from the CPU to the system memory. Thus, data

will be observed by the Sentinel bus tap as it fills the cache.

Sentinel need not be aware that data is subsequently accessed

from the cache.

In some types of embedded devices, the internal memory

on the SoC is limited and is only used to store a bootloader or

some limited subset of the code. The rest of the code will still

be stored in external memory. In these cases the Sentinel bus

tap is likely to work without issue. Since the device we have

used for our demo is not SoC-based, testing these architectures

is left to future work.

2) CPU Address Bus Control Pins: The bus tap must also

be able to differentiate between bus operations in order to

determine when a bus operation corresponds to an instruction

fetch. In many architectures [55–58] the CPU signals the type

of bus operation requested to the memory bus controller using a

control bus. The bus tap uses this control bus to differentiate an

instruction fetch from any other type of memory bus operation.

While Sentinel’s bus tap implementation is configured to

interface with the x86 architecture for the purposes of our

demo, it could be trivially modified to interface with any

other architecture that exposes memory bus control operations

through external signals.

B. Integrating Sentinel into Embedded Devices

There are numerous ways in which one could realize the

Sentinel architecture in an actual product design. In one

embodiment, we envision the Sentinel bus tap and device

profiler being packaged together on a custom ASIC along

with an enforcer. This ASIC would sit between the CPU and

memory bus controller. The manufacturer would include a

profiler mode switch inside the device. When set to profile
mode the ASIC would automatically build a new security profile

with the desired functionality and it would store the security

profile on an external flash. When set to enforce mode the

ASIC would enforce the stored profile on instruction fetches

in real-time. This would protect the device against physical

attacks (such as accessing ”locked” modes) as well as against

exploits (such as return-oriented programming attacks).

C. Methods of Integration

Sentinel can either be externally wired to existing devices

or it can be integrated into device designs as a custom ASIC.

To connect Sentinel to an existing device it must be wired to

the address bus. Alternately Sentinel is designed to be easy to

integrate into new revisions of the printed circuit board (PCB)

layout of devices already in production or to be incorporated

into the initial revision of new device designs. This flexibility

allows a design to be retrofitted with Sentinel at minimal cost.

Furthermore if a device design already uses a custom ASIC

as a memory bus controller, as was the case in several devices

that we examined, then Sentinel can be integrated directly into

this ASIC. Otherwise, Sentinel can be placed between a CPU

and a memory bus controller in order to monitor and audit bus

operations.

D. False Positives

False positives are a possibility with any security system

such as Sentinel. It is always possible that a device may

not demonstrate some functionality that is a legitimate part

of device operation but that occurs infrequently enough

to be missed when building a profile. For example, some

embedded devices check for updates or perform measurements

at extremely infrequent intervals (such as once per month). In

these case, Sentinel would report a security violation when

there is no legitimate cause for alarm.

While this may be a concern, the possibility for false

positives hardly makes a device profiler useless. Although

intrusion detection systems generate numerous false positives,

many network administrators still view IDS technology as an

important and necessary component in a network security stack.

In fact, in many cases, the most important modes that are to

be protected are the easiest to profile. For example, infusion

pumps administering therapy are often designed to disallow

other operations while therapy is in progress [59].

Thus, there is little chance that an unexpected event will

occur in such a mode, meaning that the mode is able to profiled

without the risk of false positives. As an aside, if one were to

use Sentinel with a device with such strict safety requirements,

the preferred alert behavior would be to trigger a loud and

audible alarm rather than to halt therapy immediately. This is

actually the default behavior for the Alaris infusion pumps that

we examined.

Furthermore, in the case that a profile has been correctly built

to cover all desired device functionality, Sentinel is intended

to never report a security violation when none exists. That

is, Sentinel is designed to be robust against false positives in

all cases except for errors in building a device profile. In the

case that an existing profile does not adequately cover the full

control flow graph of device functionality, it is easy to augment

an existing profile with a partial control flow graph covering

newly observed behavior.

If false positives are a particular concern for a given

application, one could easily modify Sentinel’s device profiler

in order to exclusively profile device modes rather than

to inclusively profile them. These profiles, which would

only contain undesirable device modes, could be built by

profiling the undesirable mode in addition to the device’s

normal operation. Basic block addresses observed to be in the
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undesirable mode but not in the normal operation modes would

would indicate that the device is in an invalid mode.

Finally, it is important to note that an important property

of the devices that Sentinel has been designed to secure is

longevity. Devices such as medical infusion pumps often have

10-20 year lifespans. After a long enough learning period it is

highly likely that a device profile will be fully inclusive and

thus that Sentinel will not report any false positives. The longer

the device is profiled the less likely a Sentinel is to report a

false positive. Thus, as a Sentinel-enabled device ages (and

thus as the likelihood of discovered vulnerabilities significantly

increases) the likelihood of a false positive actually decreases.

E. Failure Modes

Sentinel is designed to be flexible enough to be configured to

meet a variety of applications. The specific safety and reliability

needs of the particular applications could tailor its response

to security alerts. If a real-time enforcer were configured to

use the Sentinel-generated security profiles, the enforcer could

be easily designed to take a number of corrective actions in

response to a detected security violation based upon the needs

of the specific application.

In an audit-based implementation, Sentinel would be config-

ured to report all security violations, while allowing the device

to continue executing. This is usually the safest option to take

if we do not know in advance what effects halting execution

might have on a device.

In some cases halting execution might be superior to allowing

execution to continue. The Sentinel device profiler can be

trivially modified to cause the CPU to immediately stop

executing by connecting a security status output to the reset

pin of the attached CPU.

In more advanced designs, a corrective action could addition-

ally be implemented. For example, an administrator might want

to reset the device, disable network interfaces, and restore it

to known-good settings so that it can continue executing in an

offline-mode. For many embedded devices, Sentinel enforcers

could easily be constructed to fit any of these use cases.

V. IMPLEMENTATION

In our prototype embodiment we have externally connected

our Sentinel to a popular Intel 80C188-based [58] embedded

device. We prototyped our bus tap on an FPGA and our security

enforcer on a Linux workstation. The Sentinel bus tap is

designed to be directly wired to the address pins and bus control

pins of the 80C188. The bus tap observes all instruction fetches

and captures the start and end addresses for each basic block

that is executed. The bus tap then forwards these addresses to

the security enforcer running on the Linux workstation over

USB 2.0. On the workstation our device profiler prototype

builds a control flow graph taken from concatenated execution

traces and it enforces this profile on a captured execution trace.

The device profiler algorithm runs in sub-real-time due to

bandwidth constraints of our FPGA’s development libraries. In

a full-hardware ASIC realization this sub-real-time limitation

would not exist.

A. Intel 80C188 Architecture

The Intel 80C188 is an 80186-based 16-bit x86 CPU with

an 8-bit wide data bus. The 80C188XL contains 20 address

pins, an address latch and three bus cycle status information

pins. The bus cycle status information pins shown in Table I

[58] are used to announce the type of bus operation currently

in progress. The real-time bus monitor is wired directly to

these bus cycle status information pins. Using this information

combined with the Address Latch Enable (ALE#) pin, the bus

monitor is able to decode address bus operations.

B. Bus Tap

We prototyped the Sentinel bus tap on an Opal Kelly

XEM3010-1500 FPGA. This FPGA contains a USB 2.0

interface and a high-speed I/O bus which we connected to

the target device through an attached breakout header. The bus

tap is wired to the address and control pins and forwards all

bus traffic of a chosen type over its USB 2.0 interface to a

computer for analysis. The bus tap is wired to the address,

bus control and address latch enable pins on the 80C188. The

FPGA samples the values of these pins continuously at 133Mhz.

When the address latch is active (low) and the bus control pins

denote that an instruction fetch is occurring on the data bus,

the bus tap saves the corresponding address from which the

current instruction is being fetched. The bus tap requires that an

address is valid for three sample-cycles in order to minimize the

number of potential errors caused by electrical noise, crosstalk

and loose wires.

If the address is stable for three cycles the bus tap checks

whether the address is contiguous to the last valid address that it

captured (e.g. if currentaddress = previousaddress+1). If

the addresses are contiguous it increments the previous address

and continues to the next address. If the addresses are not

contiguous then the bus tap will have captured the end of a

basic block (e.g. the previous address) and the beginning of a

new basic block (e.g. the next address). This implies a control

flow change in the program from the previous basic block to

the new basic block. The bus tap stores both of these addresses

in a FIFO queue to await transfer to the device profiler.

The fact that we are not storing contiguous blocks in the

FIFO is an optimization to significantly increase throughput.

Rather than transmitting contiguous addresses over the USB 2.0

interface we can instead transmit block boundaries. Since the

x86 architecture always begins executing at address 0xFFFF0
the receiving computer can always determine whether it is

receiving the start address or the end address for a basic block.

This is important for reasons that will be described in our

discussion of the implementation of the device profiler.

C. Device Profiler

The Sentinel device profiler receives a list of basic block

boundaries corresponding to a device execution and uses this

execution trace to build a control flow graph of the associated

functionality of the attached embedded system. The device

profiler enforces both inter-procedural and intra-procedural

control-flow constraints. Our implementation is complicated
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by two issues: instruction prefetching and interrupt handling.

We have solved both of these issues in our x86-specific

reference implementation and our solutions are generic; they

can be applied to most architectures. We have also considered

architectures that utilize branch-prediction and out-of-order

execution even though our 80C188 CPU did not have these

features.

The Sentinel device profiler is fed a concatenated set

of execution traces taken from the embedded device as it

is run through its normal operations. The profiler tracks

the start and end addresses for all basic blocks in each

execution trace. For each address, it records the imme-

diately preceding address as a valid possible predecessor

address. That is, (previous block end, current block start)
and (current block start, current block end) are recorded

as valid jumps in the table, capturing both inter-procedural

and intra-procedural control-flow. Thus the jump table forms

an adjacency list representing the full control-flow graph of

addresses of the instructions that fall within the security profile.

Basic block boundaries are shown in more detail in Figure 1

In addition to the aggregated execution traces corresponding

to the security profile, our device profiler is also fed a target

execution trace on which to enforce the security profile. The

device profiler checks to see if every control flow change in the

target execution trace is also in the jump table corresponding to

the security profile. In the event that the control-flow change is

not in the security profile the Sentinel security enforcer outputs

a security violation. The Sentinel security profiler will detect

any unexpected control flow changes including control-flow

changes caused by device errors, by a user accessing modes

that are not in the security profile or by control-flow hijacking

malware attacks (such as buffer overflows or many types of

return-oriented programming attacks).

1) Instruction Prefetching: The Intel 80C188 CPU is capable

of prefetching up to four bytes to help keep the CPU’s pipeline

full. This prefetching would cause problems with our security

algorithms described above. In particular, the end address

that we observe for a given basic block may not be the

actual end of the block–it may actually be up to four bytes

past the block boundary. Thus prefetching introduces a small

amount of non-determinism into the system. In order to account

for this nondeterminism in the system, we must allow for

nondeterminism in our enforcement. Thus, to account for the

prefetching we allowed for a margin of error of +/- 4 bytes in

a block boundary.

In a system meant to enforce strict control-flow requirements

such as a CFI-based exploit mitigation method, this margin of

error could have an effect on the overall security of the system
2. However, since the purpose of Sentinel is instead to profile

and enforce mode constraints on an embedded device, this

nondeterminism does not significantly weaken the underlying

2Though this has not been established and indeed would have had to be
evaluated in order to make a determination one way or the other.

security of our system 3.

2) Interrupt Handling: Upon considering the security profil-

ing algorithm above it should be clear that an obvious problem

is how to account for control flow jumps generated by interrupts

and exceptions.

When an interrupt is triggered on the target system the

bus tap will detect a jump to the interrupt. This means that

the bus tap will insert a basic block boundary immediately

before the interrupt start address in the instruction stream. This

boundary does not correspond to an actual block boundary

in the software’s basic block graph but instead is caused by

the interrupt splitting the block. Similarly, an interrupt return

is followed by another block boundary where the profiler

begins executing again. This is illustrated in Figure 2. From

an enforcement perspective, this means that jumping to or

returning from an interrupt or exception should generate two

consecutive violations. Thus, we can relax the restrictions on

our enforcement algorithm to allow for this particular case

without significantly compromising our goals. Since we are

trying to disable manufacturer-implemented features and device

modes rather than enforce control-flow integrity (which is an

already-solved problem) we can assume that in almost all cases

any useful device mode or feature that we might be interested

in restricting access to would contain more than two basic

blocks. Thus we can handle arbitrary interrupts without any

knowledge of the underlying system and without compromising

security under our threat model.

In some cases we may have access to the interrupt table

(e.g. through a firmware update image). In this case we can

restrict the above algorithm to only allow for jumps to known

interrupts. This will make false negatives in the system even

less likely than in the general case. In an x86 binary image

this table is located at addresses 0x00000—0x00400. From

this table we can obtain the base address of all interrupt and

exception handlers. We can then search the binary for the

opcode of all iret instructions. Once we have lists of all

interrupts and interrupt returns we can combine these lists to

form our list of interrupt boundaries 4. Every time we detect a

control flow change we first check if it’s an interrupt boundary

(an interrupt start or end address). If so we skip enforcement

on the previous, current and next addresses. We then continue

executing normally so that we may profile the code within the

interrupts. In summary, if we know the interrupt table we can

restrict our algorithm to only allow for unprofiled jumps to or

from known interrupt-boundary addresses.

3) Out-of-Order Execution: Many modern CPU architec-

tures contain advanced performance optimizations such as

out-of-order execution. Although the 80C188 that we tested

3In order to understand why this is true consider the fact that to use
prefetching-based nondeterminism to properly profile an invalid device mode
as it profiles a valid device mode, the improper mode would need to be split
into chunks that each fall within a maximum of n bytes of the end of a basic
block where n is the maximum number of bytes that the CPU architecture
can prefetch.

4This combination is a convenience for ease of implementation. There is no
technical reason why interrupt start and end addresses could not be handled
separately for slightly greater accuracy.
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Bus Cycle Initiated S2# S1# S0#

Interrupt Acknowledge 0 0 0
Read I/O 0 0 1
Write I/O 0 1 0
Halt 0 1 1
Instruction Fetch 1 0 0
Read Data from Memory 1 0 1
Write Data to Memory 1 1 0
Passive (no bus cycle) 1 1 1

TABLE I
BUS CYCLE STATUS INFORMATION (REPRODUCED FROM INTEL

80C188XL DATASHEET).

Fig. 1. Example of how a raw bus capture (left) is split into basic blocks
(right).

our methodology on did not contain these features, we believe

that Sentinel already supports most out-of-order execution

implementations as-is. This is a corollary to the already-existing

cache support included in Sentinel. In out-of-order execution,

the CPU fetches instructions in program order and stores them

in a cache [60]. The CPU then pulls instructions from the cache

in an optimized order. Thus the out-of-order step occurs after

the instruction fetch from memory. Since Sentinel concerns

itself only with instruction fetches that occur outside of the

CPU, out-of-order execution should have no impact on Sentinel

at all.

VI. EVALUATION

We evaluate the Sentinel architecture by proving its real-

world efficacy in detecting a physical attack on an embedded

medical device. The process for this evaluation is as follows:

1) Create security profile

2) Enforce security profile

Fig. 2. Example of how interrupts split a basic block.

3) Access mode not defined in profile

4) Detect attack in execution trace

A. Alaris SE Infusion Pump

We evaluate the Sentinel architecture by connecting our

working prototype to a popular embedded medical device. For

our test implementation, we have selected the Alaris Signature

Edition (SE) Infusion Pump due to its popularity and its x86-

based architecture. We looked at two different board layouts for

the Alaris SE. The Alaris SE contains an Intel 80C188-based

[58] processor (or, in some revisions, the AMD equivalent),

a custom ASIC for address encoding/decoding and data bus

multiplexing, and either an Intel E28F800-CVT70 [61] flash

memory or an STM M27C801 UV EPROM. In board revisions

that contain the Intel E28F800 the manufacturer added a header

to emulate the pin layout of the STM M27C801 as shown

in Figure 3. When describing information that is pertinent

to both chips we will subsequently use the term ROM. The

STM M27C801-based pumps contain a socketed EPROM that

can be read using a standard universal flash programmer. We

dumped the firmware from the STM M27C801 by using a flash

programmer to receive a binary image of firmware version

2.79.

The Alaris SE logic board also contains a 128K battery-

backed SRAM to which some code is copied at boot and in

which persistent settings are stored. The Intel 80C188 is capable

of addressing up to 1MB of memory. The onboard ROM is

1MB and thus occupies the entire address space. The SRAM

overlays the memory region beginning with address 0x3D000.

Upon system boot the device first copies 6144B of data from

0xFD000 to 0x3D000 before jumping to 0x3D000 where

it begins executing.

B. Connecting the Bus Tap

We connected our bus tap to the infusion pump by soldering

wires to each address pin, the CPU bus control pins (S0, S1

and S2) and the ALE# pin. Our particular infusion pump

selectively enabled the ROM or the SRAM through the use

of chip enable pins wired from the ASIC to the respective

chips. The address pins connected to both the ROM and the

SRAM through the ASIC and used in conjunction with the

chip enable pin could be used to send an address to either

the ROM or the SRAM. The address pins wired to both of

these chips always showed the same addresses as the address

pins on the CPU. Thus to simplify the soldering we actually

soldered our wires to the address pins connected to the ROM

rather than to the CPU as shown in Figure 4. Note that this

shortcut was discovered by our testing of the Alaris SE and is

thus not necessarily generalizable to other devices. We would

not recommend a similar shortcut in a real-life deployment

without first performing similarly rigorous testing.

C. Error Correction

Due to the requirement that the bus tap interface only send

valid addresses, the bus tap will occasionally drop an address

if an error occurs. When this happens in the middle of a block,
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the bus tap will see two noncontiguous addresses and think

that a jump has occurred. If it happens at the beginning of

a block the bus tap will start the block one address after the

actual starting address of the block. If it happens at the end

of a block the bus tap will end the block one address before

the actual ending address of the block (which may or may

not be the real ending address because prefetching makes this

impossible to discern). We have trivially handled each of these

errors in software.

In our test implementation, we did not implement reliable

delivery over our bus tap interface due to overhead in our

FPGA libraries. Even without reliable delivery we were able

to reliably build and enforce profiles. The lack of reliable

delivery affected profile building but it had no impact on profile

enforcement. Indeed, in our tests, different device modes looked

so different from the perspective of our enforcer that it was

easy to distinguish between them. Similarly, despite the lossy

interface we were able to build enforceable profiles with low

false positive rates with just one sample, and we were able to

build enforceable profiles with no false positives at all by the

time we reached three samples. Thus, by profiling a device

during typical use over a short period of time we can build

reliable and enforceable profiles even with respect to lossy

interfaces. This means that in practice a bus monitor can be

significantly weaker than the system it is attached to, thus

lowering the overall cost.

D. Enforcing a Profile

To demonstrate the efficacy of the Sentinel platform we use

it to build a profile of a normal device booting and navigating to

the ”Infuse” screen where a healthcare provider can configure

infusion rate and amount and start an infusion. We intentionally

build the profile to not include the ”Options” screen. Thus,

if a user accesses the options screen this should be flagged

as a security violation. We show that we are able to build

an enforceable profile with no false positives after just three

samples.

1) Testing the Profile: In order to test the efficacy of

enforcing a security profile we took eight execution traces each

containing 8,388,608 addresses. The execution traces consisted

of the addresses of all basic block boundaries observed by our

bus monitor while we booted the pump to the ”Infuse” screen.

We also took a ninth execution trace of the device booting to

the ”Infuse” screen to use as an experimental control. Our test

case consisted of a capture of the first 8,388,608 basic block

boundary addresses observed by our bus monitor while we

booted the pump to the ”Infuse” screen and then navigated

to the ”Options” menu. Note that in all cases, parts of the

captured data were null to some screens were null due to data

loss through our system. That is, our captures were lossy.

We created eight profiles to enforce by concatenating up

to eight execution traces together. For example, profile one

contained execution trace one, profile two contained execution

traces one and two, profile three contained execution traces

1-3 and so on. We enforced each profile on our control sample

and on our experimental sample. In our control sample we

would expect to see no security exceptions since we are

enforcing our ”Infuse” profile on an ”Infuse” test case. In

the experimental sample we would expect to see numerous

security exceptions since we are enforcing the ”Infuse” profile

while the user accesses an unprofiled device mode. The results

of our experiment confirm our hypotheses and are reflected in

Table II.

2) Discussion: From our results we see that our method of

capturing lossy partial execution traces can be used to reliably

differentiate between device modes and to enforce profiles. We

see that in the control test we had a few initial false positives

but that the number of false positives quickly decreased to zero

as we added more samples to our profile.

We also observed that we were immediately able to dif-

ferentiate between our control and experimental test cases

even with just one experimental sample in our profile. As we

concatenated more samples to build our profile the number of

false positives quickly dropped. After combining four samples

into a profile all false positives not caused by physical errors

had been eliminated. Thus, our results imply that only a few

samples are needed in order to successfully profile a given

device feature. Furthermore, accessing a ”locked” device mode

generated several orders of magnitude more security errors than

accessing a profiled device mode and thus even if we had not

combined multiple samples to build a device profile we still

could have distinguished between the control and experimental

cases with high accuracy.

3) Automation Through Keypad Emulation: Because we

have shown that building accurate profiles is best accomplished

by combining multiple samples, we devised a method for

automatically generating samples by emulating keypad inputs

on our Alaris SE infusion pumps.

In order to differentiate key presses, the host device typically

uses a microcontroller to poll the button rows in sequence.

When a key is pressed, the microcontroller reads from the

column output and derives the button location in the matrix.

When no keys are pressed, there is no output on the column

lines. When a key is pressed, one of the column lines will

be logically active and the microcontroller can determine the

individual button based on the row it was polling.

The Alaris SE uses 24 buttons. The row and column lines

are fed to the host device through two 8-pin FFC (Flexible

Flat Cable) cables. In order to access these lines, we soldered

hookup wires to the the mount points on the FFC connectors on

the underside of the PCB. Using a logic analyzer, we reverse-

engineered the electrical signals corresponding to various

keypresses. Since buttons in the same column trigger output on

the same line, the first step was to map out the complete button

layout to determine which pins corresponded to column lines.

The row lines were trivial to ascertain with the logic analyzer

since the microcontroller polls were clearly evident. We found

the column lines by pressing each button and observing which

line responded. Using this process we discovered that there

were five row lines and seven column lines. The remaining

lines were unused.

Once each button’s column was known its corresponding
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# of Samples in Profile 1 2 3 4 5 6 7 8

# Errors in Control Sample 2 2 0 0 0 0 0 0
# Errors in Experimental Sample 9250 9220 9049 8705 8374 8367 8365 8358

TABLE II
RELATIONSHIP BETWEEN NUMBER OF SAMPLES IN PROFILE, FALSE POSITIVES, AND DETECTION ACCURACY.

Fig. 3. Board Layout of the Alaris SE 7132. Redundant SRAM chips on left,
CPU top-middle, flash between header pins, ASIC top-right.

row was discovered by comparing the output signal to one of

the five possible inputs. Since holding down a button will result

in the exact signal output as one of the inputs, this process was

simply done through direct comparison and was exhaustively

applied to determine the matrix location of each button. Once

complete, it was possible to wire a given row to a column

and force the microcontroller to interpret a button press. This

enabled external command of the keypad interface without

physically pressing buttons.

Using GPIO on a Raspberry Pi we replaced desirable buttons

by wiring their corresponding row and column lines through a

relay. We used a script to activate buttons in sequence, allowing

for total control over the device interface.

VII. FUTURE WORK

Some advanced architectures utilize branch prediction and

branch target prediction in order to improve performance.

Although Sentinel has not been tested on such architectures,

we believe that it should support them with extremely minor

modifications. Because Sentinel, in its current implementation,

allows two consecutive invalid jumps before it flags a mode as

suspicious, a missed branch prediction should not trigger an

alert. However, we have not tested this and it is conceivable

an alert may be triggered if an interrupt occurs after the CPU

has fetched instructions for a predicted branch that isn’t in the

profile that Sentinel is enforcing. This could be remedied by

allowing for one additional level of indirection before triggering

an alert (e.g. by allowing three consecutive invalid jumps before

triggering an alert).

Because the 80C188XL found in our test device does not

support features such as branch prediction or out-of-order

execution we were not able to test our out-of-order execution

algorithm in practice. We believe that this would be a useful

Fig. 4. Image of Sentinel Bus Tap attached to an Alaris SE 7100 Infusion
Pump.

exercise as it would improve confidence in our algorithm and

definitively open up Sentinel to a new class of devices.

It would also be interesting to conduct an observational study

in order to determine how often devices deviated from their

execution profiles in a variety of use cases. This would allow us

to derive an understanding of applications for which Sentinel

would be well-suited and for which applications Sentinel would

be poorly suited given that Sentinel’s enforcement model

depends on having a predictable and inclusive execution profile.

VIII. CONCLUSION

Sentinel is a useful and practical tool for utilizing bus

captured execution traces to build partial control flow graphs

of embedded devices. These control flow graphs can be used

to audit execution traces of embedded devices in order to

detect physical attacks. The Sentinel platform can be attached

to existing devices with no modifications to the underlying

design. We have shown our bus monitoring technique to be

effective in building partial control flow graphs and we have

used it to successfully detect physical attacks on a popular

legacy model of infusion pump. In the future, this work could

lead to ASIC-implemented hardware co-processors that can be

used to secure later revisions of legacy designs by enforcing

limited-use device profiles on otherwise feature-rich devices

in real-time.
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