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Abstract

We give a self-contained presentation and evaluation of a
number post-election audit procedures. Methods which
do not provide a statistical bound on the chance of be-
ing wrong give little confidence in the reported outcome of
an election.

1 Introduction

With the introduction of electronic voting machines, a new
class of security concerns has arisen. Namely, how can we
ensure that a voter’s intent is accurately reflected by the
ballot cast when the choices are stored electronically in ag-
gregate as a collection of counters. This is the case with
Direct Recording Electronic (DRE) voting machines cur-
rently in use.

Trust in the electoral process is an essential component
of any democracy. One way to build trust is to have open
and transparent elections. Using computers in elections is
an excellent way to increase efficiency, but it comes at the
cost of transparency. How can we be sure that the votes
we cast are the votes recorded? One way is to have redun-
dant records which are compared to ensure that every vote
is counted as intended. Unfortunately, this is prohibitively
expensive and in many cases, unnecessary. Instead, we re-
lax the constraint that every vote be recorded correctly and
give a statistical guarantee that the outcome of the election
matches the voters’ will, rather than each individual’s bal-
lot. We do this by keeping a paper record of each vote
in addition to an electronic tally and performing audits—
typically hand recounts—of individual precincts to detect
miscounts. If we find no miscounts in a sufficiently large
sample, we confirm the election.

1.1 Election process

The election process consists of five distinct phases: setup,
voting, reporting, tabulation, and auditing [HRSW08].

Setup. During the period between elections, voting ma-
chines are stored away from polling places under the
control of either the local government or the voting

machine vendors. Shortly before an election, during
the setup phase, the voting machines are moved to the
polling places by election workers and configured for
the upcoming election. At this time, hardware and
software checks of the machines take place, such as
printing of the zero tape1 and ensuring that the ma-
chine works in a simulated election. After setup is
complete, the voting machine is ready to begin count-
ing votes.

Voting. On election day, voters queue at their assigned
polling place and sign in. Once they sign in, they
are given either a ballot or some token to use with
electronic voting machines. The voter then makes her
choices and casts her ballot—either depositing a physi-
cal ballot in a collection box or confirming her selection
on a review screen. If the voter had received a token,
she returns it to the election workers who prepare it
for the next voter.

Reporting. After all votes have been cast, the election
workers close the polls, collect the ballots or electronic
voting machine totals and send the results to a central
location in the county. In the case of DRE or precinct-
count opscan machines, the results are transmitted to
the county using either a memory card or electronically
over a network. At this time, an early report of the
vote totals can be reported to the candidates and the
press.

Tabulation. In the tabulation phase, an official count of
each race is prepared by election officials by count-
ing centrally-counted, absentee, and provisional ballots
as well as write-ins and combining with the precinct-
counted ballots [HRSW08]. Official winners of each
race are determined at this time.

Auditing. After electronic totals have been produced, the
results are audited in an attempt to check election ac-
curacy. Each state has its own laws regarding election
auditing. Most require a flat-rate or tiered percent-
age based on how close the race was. For example, in

1The zero tape is the record of how many votes have been cast
so far. Since none have been cast, the counters should all be zero or
something is amiss.
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California, there is a mandatory 1% manual recount
requirement.

At the conclusion of the five election phases, we should
know that the outcome of the election accurately reflects
the will of the people with high probability.

The current trend in voting for the past several years has
been a move from the more traditional paper ballots or
lever-machines to electronic voting machines. The current
implementation of electronic voting machines and in par-
ticular DREs is flawed. We briefly discuss a few of the more
severe flaws in Section 2. In order to be able to perform
post-election audits of voting machines, a paper record of
the votes cast is required. A few of the challenges associ-
ated with the voter-verified paper trail emitted by DREs
is discussed in Section 3. At the conclusion of the tabula-
tion phase of an election, it is time to verify the results so
that the election can be certified. There are a number of
post-election audit methods that one can use. A number
of methods for selecting which precincts to audit and how
to perform the audit itself are the subjects of Sections 4
and 5. We conclude and discuss possible directions for fu-
ture research in Section 6

2 Voting machine security

In addition to equipment malfunction and procedural de-
ficiencies which can lead to inaccurate vote totals, the
current generation of electronic voting machines contain
serious security flaws. A brief list of just a few of the
more serious flaws with the Premier2 AccuVote-TS com-
piled from [KSRW04, FHF07, CFH+07] is given below. A
complete discussion of the myriad of flaws is outside the
scope of this report, but see California’s “Top-To-Bottom”
review [Bow07] for a more comprehensive report on the
issues plaguing the electronic voting machines used in Cal-
ifornia.

The AccuVote-TS is a DRE voting machine. During the
setup phase, poll workers prepare the machines for the elec-
tion by inserting a memory card which contains a file pro-
viding ballot definitions for use in the election. Voters are
given smartcards as tokens that allow a vote to be cast. A
printer can be attached to the voting machine to provide a
voter-verified paper audit trail (VVPAT) which is used in
post-election audits. Voting ends when poll workers insert
an ender card or an administrator card and enter a pass-
word. A memory card is then used to collect the vote totals
and is sent to the county central office for county-wide tally-
ing by the Election Management System (EMS)—a general
purpose computer running a standard version of Microsoft
Windows.

• The most serious issue is the potential for a voting ma-
chine virus to spread from machine to machine. This

2Premier Election Solutions, which was formerly Diebold Election
Systems, Inc.

can be accomplished by infecting the memory cards
used to provide the ballot definition files used in the
setup phase as well as the memory cards used for re-
porting precinct vote totals. These memory cards can
then infect the EMS. Once the EMS is compromised,
all election tallies in the current and future elections
are suspect. The attack works because the TS will
overwrite its firmware with the contents of a file with
a particular name on a memory card present at boot-
time.

• During the voting phase, a voter is given a smartcard
which authorizes the voter to cast one vote. After the
vote is cast, the data is overwritten on the smartcard
so that no more votes may be cast with that card until
it is reset by election workers. A malicious voter who
knows the simple layout of the card can vote multiple
times by changing the smartcard such that it does not
overwrite its data. Alternatively, multiple smartcards
could be prepared in advance to allow voting multiple
times. This can be detected by election officials dur-
ing the reporting phase by ballot reconciliation where
the number of ballots cast is compared to the num-
ber of voters who signed in—assuming this check is
performed.

• Similar to the previous issue, a voter can construct an
ender card or an administrator card to prevent more
votes from being cast. For example, in a precinct
known to favor candidate A, a group of malicious vot-
ers who favor candidate B could disrupt voting in the
precinct by inserting ender cards into the machines.

• Vote-stealing software can be installed alongside the
election software by an insider or by the firmware ex-
ploit described above. The vote-stealing software can
undetectably move votes from one candidate to an-
other and can be written in such a way that this only
happens during the election phase and not during the
testing done in the setup phase.

• The VVPAT is subject to several attacks. Assume the
attacker prefers candidate A over candidate B. When a
voter votes for A, the software behaves correctly cast-
ing a ballot for voter A. When a voter votes for B, the
software prints CANCELED and quickly scrolls the
spoiled ballot and prints a new one for candidate A
which also scrolls quickly past the window. The voter
may not even notice that this has happened.

A second attack involves switching the provisional sta-
tus of ballots. If the provisional voter votes for B, the
software behaves as normal and casts a provisional bal-
lot for B. If she instead voted for A, the ballot is cast
as nonprovisional. At a later time, when a normal
voter votes for B, his ballot is marked as provisional.
If the first voter—the one who voted for A—is found
to be ineligible, a vote will be removed from B’s count
instead.
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• Since the VVPAT is printed in a reel-to-reel fashion, if
the order of voters is known, the secrecy of the ballots
can be compromised by an insider.

The risks associated with these issues can be somewhat
mitigated by following the recommendations in [HRSW08].
In any case, it is clear that measures beyond those imple-
mented by voting machine vendors are required to ensure
the accuracy of our elections.

3 Paper trails

The need for a voter-verifiable paper audit trail (VVPAT)
is nearly universally recognized by election researchers and
election officials. A VVPAT serves two essential functions.
One function is to provide a way for the voter to verify her
selection before casting her ballot. Equally important is
that the VVPAT serves as the ballot of record in the event
of an audit. Currently, thirty-two states have legislation or
regulations requiring a voter-verified, paper ballot of record
while an additional eight have had legislation proposed but
not yet enacted [Kib08].3

With a traditional paper ballot, punch card ballot, or
optical scan (opscan) ballot, the ballot itself serves as a
VVPAT. DRE machines can be equipped with a printer—
usually a thermal printer akin to that used to print
receipts—to print a VVPAT. Other voting technology such
as lever machines and DREs without a printer offer no way
to provide a VVPAT. As a result, there is no way for the
voter to verify that her choices were recorded as intended
and an audit is limited to summing the counts for each vot-
ing machine in a precinct and comparing to the previously
reported total.

In theory, VVPATs are an excellent way to both verify
selections and provide a method of auditing. The reality is
quite a bit different. As Section 2 shows, the VVPAT is not
at all immune to fraud. Studies show that when using a
DRE with a VVPAT, most voters do not know about or do
not check the VVPAT before casting the ballot. Everett’s
studies [Eve07] show that over 60% of voters do not notice
that their selections have been changed as reported by a
review screen—even if the changes are so extensive as to
add or remove entire races. If a voter does not notice a
changed selection on the screen used to make the selection
in the first place, it seems even less likely that she would
notice a change in the VVPAT which are typically off to
the side or even completely covered [FHF07].

Even if the voter verifies that her selection is correct, the
VVPATs in use by DREs are plagued by problems. The
Election Science Institute’s report on Cuyahoga County,
Ohio discusses a number of issues. They report that 9.7% of

3Verified Voting’s web site lists Arkansas as having mixed require-
ments; however, the text of AR Code §7-5-504 was amended by
H.B.360 to read, “If the machine is a direct read electronic voting
machine, it shall include a voter verified paper audit trail as provided
under §7-5-532,” where §7-5-532 states that the VVPAT is the ballot
of record in the case of a recount.

the VVPAT ballots were “either destroyed, blank, illegible,
missing, taped together, or compromised in some way.” In
addition, 1.4% of the VVPATs were missing ballots [ESI06].
Worse still, studies have shown that auditing the ballots
is an error prone task with 40%–60% of the participants
in the studies giving an incorrect count of ballots [GB07,
GBG+08].

Despite all of the flaws in VVPATs, without them, there
is very little that can be done from an auditing standpoint
to provide statistical guarantees of correctness [HRSW08].
As such, the paper record produced by an electronic voting
machine is our main object of study. In Stark’s words,
“Hand counts are subject to error, but they are the gold
standard” [Sta08a].

4 Confidence level election audit-

ing

The goal of confidence level election auditing is to provide
a mathematically sound upper bound on the probability
that the reported outcome of an election does not represent
voters intent. Appel [App07] suggests that it is important
that the losing candidate have confidence that the reported
outcome is correct and the mere presence of the auditing
process should deter fraud by providing a significant chance
of detection.

In the electoral process, there are many potential sources
of error. The voter can vote for fewer candidates than
allowed—called an undervote—or vote for too many and
thus spoil her ballot—called an overvote. A software error
could cause a vote for candidate A to be counted for candi-
date B, count votes that do not exist, not count votes that
were cast, or a whole host of other errors. In addition to
simple errors, human or otherwise, there is the possibility
of fraud. As shown in Section 2, fraud is a very real pos-
sibility with current electronic voting machines. As fraud
is the most difficult sort of error to detect, it is our main
focus. What to do when evidence of fraud is detected is a
political or criminal matter and as such is far outside the
scope of this report.

Election auditing is typically studied from the perspec-
tive of hypothesis testing. The null hypothesis H0 which we
wish to reject or nullify is that the outcome is wrong—i.e.,
one or more of the presumptive winners are losers and vice-
versa. The probability of the error of rejecting H0 when it
is true—a type I error—is the significance level α of the
test used to make that determination. In other words, if a
significance level α test confirms the election (rejects H0),
then either the outcome is correct or an event with prob-
ability at most α has occurred. The other possible error,
accepting H0 when it is false—a type II error—is less se-
vere since while it should lead to further audits which take
time and cost money, it cannot lead to confirming a losing
candidate as a winner. The power of a test is the probabil-
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ity of correctly rejecting the null hypothesis. The p-value4

is the smallest α such that our test rejects H0. For a more
complete discussion of hypothesis testing see [Was04].

Note that this is not the only choice of H0. We could
have chosen to make H0 be that the outcome is correct. In
that case, a type I error would be incorrectly rejecting H0

and thus erroneously deciding that the outcome was incor-
rect. This error would lead to further investigation which
should eventually discover that the outcome was correct—
perhaps by a complete hand count. However, a level α test
does not bound the probability of the more serious error
of incorrectly accepting H0—that is, incorrectly confirm-
ing the election. This is our primary concern and thus we
want a level α test for the null hypothesis that the outcome
is incorrect.

Define the confidence level of an election audit to be
c = 1 − α where α is the significance level.5 For a given
confidence level c—e.g., c = 95% or c = 99%—the ques-
tion is which precincts must be audited after an election
to be sure that the reported results are accurate with a
confidence of c.

It is well-known that ballot-based auditing methods are
more efficient than precinct-based auditing in terms of
number of ballots audited [Wan04, CHF07, Dop08]. Unfor-
tunately, the electronic voting machines currently in use do
not provide electronic ballots to audit. For this reason we
focus on precinct-based auditing, but see Subsection 4.12
for a brief discussion of ballot-based auditing.

Our goal is to give a statistical bound on the chance of
an error occurring. To do so, we will be sampling from a
probability distribution and so we need a source of random-
ness to generate random numbers. There are a number of
options. Cordero, Wagner, and Dill [CWD06] recommend
using translucent, 10-sided dice. Election officials would
first publish the probability distribution from which they
are going to sample. The dice would then be rolled and
video taped in the presence of observers. Sampling can
be performed in a simple manner. When given a prob-
ability distribution with probabilities P1, P2, . . . , Pk, we
can form the cumulative distribution F0, F1, . . . , Fk where
Fi =

∑i
j=1 Pj—where F0 = 0—and write the values in a

table. We can sample from this distribution by rolling a die
q times where the ith roll is the ith decimal digit di of the
number x = 0.d1d2 . . . dq . If Fj−1 ≤ x < Fj , then we have
sampled the jth event. The number of rolls q depends on
the distribution.

A pseudo-random number generator (PRNG) is a com-
mon, easily accessible option. Knuth [Knu97] shows the
dangers of implementing one’s own PRNG; however, there
are a number of good choices available. The use of a cryp-
tographically secure PRNG—where the seed is chosen by
combining random numbers produced by a number of dif-
ferent people using dice—is recommended by Calandrino,

4We are overloading p as both p-value and a precinct p. Which
one we mean should be clear from context.

5Confidence as used in the election literature differs from its usage
in statistics.

Halderman, and Felten [CHF07, CHF08]. A PRNG that is
not suitable for use with cryptography should not be used
for elections either.

4.1 Notation

For the purposes of auditing, we focus on a single race
or ballot issue at a time. Following the notation of
Stark [Sta08a], there are N precincts and K candidates.
Each voter can vote for up to f candidates. Let vk,p be the
reported number of votes candidate k received in precinct
p and ak,p be the actual number of votes candidate k re-
ceived in precinct p as reported by an audit of p. Let
Vk =

∑N
p=1 vk,p be the total number of reported votes for

candidate k and Ak =
∑N

p=1 ak,p be the actual total num-
ber of votes for candidate k. The set of indices of the f
winners is denoted Kw while Kl = {1, 2, . . . , K} \ Kw is
the set of indices of the losing candidates. Define the mar-
gin M to be the difference in reported votes between the
lowest performing candidate in Kw and the highest per-
forming candidate in Kl:

M = min
k∈Kw

Vk − max
k∈Kl

Vk. (4-1)

Define the potential margin overstatement discrepancy—
think error—in precinct p as

ep =
∑

k∈Kw

max{vk,p − ak,p, 0}+
∑

k∈Kl

max{ak,p − vk,p, 0}.

(4-2)
This is the maximum amount by which fraud in precinct p
could change the margin. In addition, let up be an a priori

upper bound on ep. Let E =
∑N

p=1 ep be the total discrep-
ancy. Define bp to be the number of voting opportunities
in precinct p calculated as f times the number of ballots,
including undervoted and invalid ballots.

Let n denote the number of precincts to audit which will
typically be a function of several parameters. The num-
ber of bad precincts will be denoted by b—i.e., the num-
ber of precincts where fraud has occurred. If there are N
precincts, b of which are bad, then with a uniform sample
without replacement of size n, the chance that all b bad
precincts escape detection is the hypergeometric distribu-
tion

e(N, b, n) =

(

b
0

)(

N−b
n

)

(

N
n

)

=

n−1
∏

k=0

N − b− k

N − k
,

(4-3)

while the chance of detection is d(N, b, n) = 1− e(N, b, n).

4.2 100% confidence

Even if a confidence level of c = 100% is required, we need
not always audit every precinct [MSL+07, Dop08]. After
auditing some number of precincts, if the difference be-
tween the actual lowest performing candidate so far and
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the actual highest performing candidate so far is greater
than the number of ballots left to audit, then the auditing
can stop. At this point, the true results are known without
100% auditing and the election can be certified.

4.3 Fixed percentage audits

One simple idea is to pick a fixed percentage of precincts to
audit uniformly at random. For example, California man-
dates a fixed 1% audit for every election.6 This has the two
advantages of both being simple to understand and every
ballot has the same chance of being audited—the lack of
either could lead to voter disenfranchisement.

The problem with this simple strategy is that it provides
no guarantees on the probability that vote fraud will be
discovered. Consider an election with N−1 small precincts
and one large precinct. If a fixed fraction F of the precincts
are audited uniformly at random so n = dFNe, then the
chance that the large precinct is audited is

d(N, 1, n) = 1−

(

N−1
n

)

(

N
n

) =

(

N−1
n−1

)

(

N
n

) , (4-4)

where the ceiling n = dFNe is to sample an integral num-
ber of precincts that is at least the fraction F of the to-
tal number of precincts N . For example, if N = 100 and
F = 0.01, then the chance that the large precinct is au-
dited is

(

99
0

)

/
(

100
1

)

= 1/100. If the number of votes that
can be switched from a winning candidate to a losing can-
didate in the large precinct without causing suspicion (see
Subsection 4.4) is large enough to change the outcome of
the election, then the election can be stolen by fraud in
only the large precinct.

4.4 1%+7 auditing

One alternative to fixed percentage auditing is to allow a
candidate or a candidate’s party to select some number
of precincts to audit in addition to a fixed percentage of
precincts selected uniformly at random. Appel proposes a
1% fixed percentage audit and that candidates be allowed
to select—and pay for—7 precincts to be audited [App07].
The argument is that in large elections, the 1% will be
enough to detect fraud whereas in a smaller election, the 7
additional precincts will be sufficient.

This depends on an assumed maximum percentage of
votes s that can be shifted from one candidate to another
in a precinct. It is assumed that if more than s of the
votes in a precinct are changed, it will be “obvious” and
lead to further investigation. There is no mathematical
foundation to this number but several different values have
been proposed including 14% [App07], 15% [Sal75, DS06],
20% [Sta06, MSL+07, NBHC07], and 50% [Dop08]. This
value has variously gone by the names “maximum level of

6Actually, California mandates that at least 1% of the precincts in
each county be audited at random plus at least one precinct in each
contest missed by the sample [Sta08a].
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Figure 1: Plots of the number of additional precincts to au-
dit on top of a 1% audit to ensure confidence level c. The
plots are y(N) = N

(

1 − exp(s log(1 − c)/Nx)
)

− 0.01N—
which corresponds to auditing fractional precincts—and
y(N) =

⌈

N
(

1− exp(s log(1− c)/Nx)
)

e − d0.01N
⌉

—which
corresponds to auditing an integral number of precincts—
for 0 ≤ N ≤ 852 ≈ −s log(1 − c)/

(

x log(100/99)
)

with
c = 0.95, s = 1/7 and x = 0.05.

undetectability by miscount” (MLU) [Sal75], “maximum
vote shift” [DS06, NBHC07], and “within precinct mis-
count” (WPM) [Sta06, MSL+07].

Assume that no more than a fraction s of the total votes
in a precinct are changed and assume that each of the N
precincts has a uniform size. If the total fraction of votes
changed is x, then there are b = Nx/s bad precincts. Ap-
pel uses Rivest’s “Improved Rule of Three” [Riv06]7 for
an upper bound on the number of precincts needing to be
audited to detect fraud in b precincts with confidence c:

n(N, b, c) ≥ N

(

1− exp

(

log(1− c)

b

))

= N

(

1− exp

(

s log(1− c)

Nx

))

.

(4-5)

Setting n(N, b, c) = 0.01N and solving for N we find that
a 1% audit is sufficient for

N ≥ −
s log(1− c)

x log(100/99)
. (4-6)

Using the values s = 1/7 ≈ 14%, x = 0.05, and c = 0.95,
we see that by auditing an additional 8 precincts on top
of a 1% audit there is a 95% confidence of detecting a 5%
fraud; see Figure 1. Note that there is only a small range
of numbers of precincts for which 7 does not suffice. This
range shrinks to about 60 ≤ N ≤ 100 if d0.01Ne is used as
the number of precincts to audit for the mandatory 1%.

Unfortunately, the method of 1% + 7 suffers from sev-
eral problems. The confidence bounds only apply if the 7

7This was proved to be an upper bound in [APR07] whereas
[Riv06] merely gives numeric and heuristic arguments.
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precincts are chosen uniformly at random—something un-
likely to happen when chosen by a candidate. In addition,
the precincts are assumed to have uniform size, something
most counties do not have. Furthermore, low levels of vote
shifting or miscount (below 2%) have a small chance of de-
tection by this auditing strategy. In close elections, this is
insufficient.

4.5 Auditing precincts of equal size

Subsection 4.4 demonstrates the need for statistical bounds
on the number of precincts to audit. In order to guarantee a
given confidence level c, we need several assumptions which
we will relax in later subsections. As before, we assume N
equal sized precincts and a maximum percentage s of votes
that can be shifted from one candidate to another without
being “obvious.” The question is, how many precincts need
to be audited (uniformly at random) to have confidence c.

Saltman, Dopp, and Stanislevic independently develop
the basic framework given here for counting the minimum
number of precincts to audit [Sal75, Dop06, Sta06]. For
a given margin M , we can compute the minimum number
of bad precincts b necessary to alter the outcome of the
election based on the maximum vote shift s. Since shifting
one vote changes the margin by up to 2, if V =

∑K
k=1 Vk is

the total number of votes, we have

b =

⌊

MN

2sV

⌋

. (4-7)

Once we have b and our desired confidence level c, the ques-
tion is the minimum value of n—the number of precincts
to sample—such that d(N, b, n) ≥ c, or equivalently,
e(N, b, n) ≤ α where α is the significance level.

In order to solve for n, Dopp and Stenger [DS06] give a
numerical solution. Starting with c ≤ d(N, b, n), we expand
to

(N − n)!

(N − b− n)!
≤

(1− c)N !

(N − b)!
, (4-8)

take the natural log of both sides

log(N−n)!−log(N−b−n)! ≤ log(1−c)+logN !−log(N−b)!
(4-9)

By using x! = Γ(x + 1) where Γ(z) =
∫∞

0 tz−1e−t dt and
numeric implementations of log Γ(z), one can compute nu-
meric solutions to Equation (4-9), and thus find the optimal
number of precincts to audit n.

One drawback of this approach is that it requires a nu-
meric calculation—for example, the MATLAB code given
in [DS06]—that is not easy to perform on a hand calcula-
tor by election officials. We would like a conservative upper
bound that is not too large. Rivest [Riv06] gives the “Im-
proved Rule of Three” mentioned above which is proved
correct in [APR07] and goes further. The remainder of the
calculations in this subsection follow from the latter paper.

There is a nice duality between the number of bad
precincts b and the number of sampled precincts n given

by

e(N, b, n) =
(N − b)!

(N − b− n)!
·
(N − n)!

N !
= e(N, n, b). (4-10)

Combining Equations (4-3) and (4-10), we have a new way
to compute the probability of escaping detection:

e(N, b, n) =
b−1
∏

k=0

(

1−
n

N − k

)

. (4-11)

For the purposes of auditing, we must have an integral num-
ber of precincts n, but Equation (4-11) is perfectly well-
defined for arbitrary real values of n. This observation,
combined with a very clever application of the arithmetic-
geometric-harmonic mean inequalities (see Appendix A)
gives the conservative upper bound

n(N, b, c) ≥

(

N −
b− 1

2

)

·

(

1− exp

(

log(1− c)

b

))

.

(4-12)
As usual, we need for n(N, b, c) to be integral so we
take n(N, b, c) to be the ceiling of the right-hand side of
Inequality (4-12). If we compute a lower bound on the op-
timal number of precincts to audit nOPT(N, b, c), we see
that

n(N, b, c) ≤ nOPT(N, b, c) +

⌈

−
log(1− c)

2

⌉

+ 1.8 (4-13)

See Appendix B for the calculations of these bounds, in-
cluding the upper bound in Equation (4-5).

The major advantage of the method in this subsection
is that sampling n(N, b, c) precincts uniformly at random
is guaranteed to find at least one of the b bad precincts
with probability c. The assumption that all precincts have
equal size has the effect of maximizing the minimum num-
ber of bad precincts b for a given maximum vote shift
s. This works well in states like New Jersey which have
roughly uniform precinct sizes [App07], but is unlikely to
be true in general. If individual ballots are audited instead
of precincts—something not generally possible with current
DREs—the total number of ballots cast must be used in-
stead of total numbers of votes in order to handle overvotes
and undervotes [Dop08].

4.6 SAFE auditing

The SAFE auditing method of [MSL+07] is a slight exten-
sion to the methods of the previous subsection by allowing
variable sized precincts.

We can relax the equal sized precincts restriction to as-
suming that the average number of votes in precincts with
fraud is the same as the average number of votes in all

8The calculation in [APR07] does not contain the + 1. In that
paper, the values n(N, b, c) and nOPT(N, b, c) are not constrained to
be integers while computing the bound on n(N, b, c)− nOPT(N, b, c),
leading to the off by one.
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precincts. In this case, we compute the number of bad
precincts b as in Equation (4-7) and use Inequality (4-12)
to compute the number of precincts to sample uniformly at
random [Sal75, MSL+07].

If precinct sizes are not equal or we suspect that fraud
will not happen only in average-sized precincts, then we can
adjust the number of bad precincts by assuming that fraud
only happens in the largest. This can be calculated directly
assuming a maximum vote shift s by using the number of
ballots cast in each precinct or by a heuristic such as

b̃ =

⌈

b

log10(N/b) + 1

⌉

, (4-14)

where b is computed as in Equation (4-7) [MSL+07]. As be-
fore, this value is used to calculate the number of precincts
to sample uniformly at random using Inequality (4-12).

Using the SAFE auditing method, we can audit precincts
of unequal sizes. Overvotes and undervotes are handled
correctly as long as the number of ballots cast in a precinct
are used instead of the number of votes [Dop08].

4.7 Margin overstatements, overvotes, un-
dervotes, and Stark’s “pooling rule”

Recall that the potential margin overstatement discrepancy
ep in Equation (4-2) is the maximum amount by which er-
ror in precinct p could increase the margin M , and that the
total discrepancy is E =

∑N
p=1 ep. As long as E < M , the

apparent set of winners Kw must be the actual winners; see
Appendix C. Furthermore, if up is an upper bound on ep,

then if
∑N

p=1 up < M , then the apparent winners are the
actual winners. See Subsection 4.9 for choosing the upper
bounds.

Stark [Sta08a] describes a way to handle overvotes, un-
dervotes, and “obviously” losing candidates in a unified
manner. To handle overvotes and undervotes, a new
pseudo-candidate is created and credited with all of the un-
dervotes and f times the overvotes. Doing this handles the
overvote and undervote in each precinct by simply increas-
ing the maximum discrepancy ep. Furthermore, obviously
losing candidates together with overvotes and undervotes
can be grouped together—pooled—into pseudo-candidates.
Each pseudo-candidate’s aggregate total may not exceed
the total votes for the highest performing apparent loser.
Overvotes are counted as f times the number of ballots.

As we will see in Subsection 4.9, it is preferable for the
candidate with the fewest votes to have as many votes as
possible. This suggests that we pool the candidates into
some number of pseudo-candidates such that the pseudo-
candidate with the fewest aggregate votes has as many as
possible. In general, this pooling is NP-hard; however, for a
small number of candidates, it should be tractable [Imp08].

As an example, consider a five candidate race with two
winners—so f = 2. Suppose the reported votes were as in
Table 1a. Since there are 2 winners, both A and B are win-
ners while C is the runner up. The margin is the difference

Table 1: Example election

(a) The vote tallies for the
candidates.

Candidate Votes

A 1000
B 900
C 500
D 250
E 250
undervotes 20
overvotes 20
writeins 15

(b) The vote tallies after pooling
into pseudo-candidates.

Pseudo-candidate Votes

A 1000
B 900
C 500
DO 290
EUW 285

between B and C so M = 400. There are several ways to
pool the candidates such that the margin does not change.
For example, pooling D and E into a pseudo-candidate DE
and pooling the undervotes, overvotes, and writeins into
UOW makes the pseudo-candidate with the fewest votes
be UOW with 20+2 · 20+15 = 75 votes—where we multi-
plied the overvotes by f = 2. If we instead pool D with the
overvotes and E with the undervotes and writeins, then the
pseudo-candidate with the fewest votes as many as possi-
ble, see Table 1b.

This pooling approach has the advantage that votes
shifted from one candidate to another when both are part
of the same pseudo-candidate cannot affect the outcome of
the election. Thus they can be ignored—at least for the
purpose of certifying the election. Of course any evidence
of fraud is worth further investigation!

4.8 Negative-exponential auditing method

The negative-exponential auditing method (NEGEXP) of
Aslam, Popa, and Rivest [APR08] does away with the sam-
pling uniformly at random approach; as do the remainder
of the auditing methods discussed in this report. The NEG-
EXP method is mathematically quite elegant.

We have discussed above how more fraud can be “hid-
den” in a larger precinct—at least under the assumption
that the maximum vote shift fraction s is constant. To
handle this, the SAFE auditing method of Subsection 4.6
increased the number of precincts to sample uniformly at
random to account for the smaller number of bad precincts
that would need to be corrupted. NEGEXP handles this
in a particularly pleasing manner.

Recall that up is an a priori upper bound on the poten-
tial margin overstatement discrepancy ep. That is, it is an
upper bound on the amount by which fraud in precinct p
can change the margin M .

Given a set of precincts S, we would like the probabil-
ity of auditing at least one of the precincts in S to depend
only on the bound

∑

p∈S up. Thus, for any precincts p, q
and r, if up = uq +ur, the probability of sampling precinct
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p is the same as the probability of sampling precincts q
or r. Rephrasing, the probability of not sampling precinct
p should be the same as the probability of not sampling
precincts q and r. For each precinct p, let Pp be the prob-
ability of auditing precinct p. The requirement is

(1− Pp) = (1− Pq)(1− Pr). (4-15)

Thus, we define Pp = 1 − exp
(

−up/w(c)
)

where w(c) de-
pends on our desired confidence level and will be deter-
mined shortly.

The major benefit to defining our precinct sampling
probabilities in this manner is that given any set of
precincts S with

∑

p∈S up ≥ M , the chance of sampling
at least one precinct in S is

1−
∏

p∈S

exp

(

−up

w(c)

)

≥ 1− exp

(

−M

w(c)

)

. (4-16)

For a given confidence level c, we want the lower bound
1−

∏

p∈S

(

−up/w(c)
)

≥ c. Using Inequality (4-16), we set
w(c) = −M/ log(1− c), and thus precinct p is audited with
probability

Pp = 1− (1− c)up/M . (4-17)

The NEGEXP method is simple to implement in a trans-
parent manner. Once we have the bounds up, the probabili-
ties Pp can easily be calculated and each precinct is audited
according to that value. By employing Stark’s pooling rule,
NEGEXP handles undervotes and overvotes.

One downside is that since NEGEXP samples each
precinct with probability independent of the others, the
probability of sampling each precinct is higher than it
would be if the precincts were not sampled independently.
For example, assume each precinct has the same size
and the error bounds are computed as a fraction s of
the total votes in a precinct as in Saltman’s method of
Subsection 4.5. Then precinct p is audited by NEGEXP
with probability PNEGEXP

p = 1 − (1 − c)1/b and by Salt-
man’s method with probability

P Saltman
p =

n(N, b, c)

N
≤

(

1−
b− 1

2N

)

(

1− (1− c)1/b
)

+
1

N
,

(4-18)
where this inequality uses the bound in Inequality (4-12)
with a + 1 replacing the ceiling. As b increases relative
to N , NEGEXP samples each precinct with probability in-
creasingly higher than Saltman’s method.

Another downside is a potential for voter disenfranchise-
ment since votes do not have an equal probability of being
audited and thus smaller precincts could be perceived as
being less important.

The question remains: how should we choose the a priori
bounds up? This question is relevant to the remainder of
the auditing methods discussed in this report and thus is
the subject of the next subsection.

4.9 Choosing the bounds

In the auditing methods discussed so far, we have assumed
a bound proportional to the size of the precinct. That is, we
have assumed that no more than a fraction s of the votes in
a given precinct could be changed. Thus if precinct p has bp

voting opportunities—that is, f times the number of ballots
returned, where each voter can vote for f candidates—then
up = 2sbp where the worst case is that the fraction s of
the bp votes were changed from the apparent losers to the
apparent winners.

We can derive a mathematically sound upper bound up

for each ep [Sta08a]. Let rp be an upper bound on the
actual total vote in precinct p. That is,

∑

k∈K ak,p ≤ rp.
This can be f times the number of ballots or f times the
number of voters registered in a precinct, for example. No
matter how rp is determined, ep is maximized if every one
of the rp votes is for the apparent loser with the fewest
reported votes in precinct p:

ep ≤ rp +
∑

k∈Kw

vk,p − min
k∈Kl

vk,p. (4-19)

The number on the right hand side can be used for the
upper bound up.

Note that the right-hand side of Inequality (4-19) is max-
imized when there is a losing candidate with zero votes.
Stark’s pooling rule discussed in Subsection 4.7 attempts
to maximize the number of votes for the pseudo-candidate
with the fewest votes. This has the effect of decreasing the
up and thus requires fewer precincts to be sampled.

4.10 Sampling with probability propor-
tional to error bounds with replace-
ment

The NEGEXP method is essentially optimal for sampling
precincts independently in that no attacker’s strategy for
committing fraud performs any better than another’s (as-
suming that the maximum amount of fraud is committed
in each precinct). As noted above, when precincts have the
same size, it is more efficient to sample using Saltman’s
method. This is because the precincts are not sampled in-
dependently and missing a precinct in one draw increases
the chance of selecting it in subsequent draws. The method
of auditing by sampling with probability proportional to er-
ror bounds with replacement (PPEBWR) of Aslam, Popa,
and Rivest [APR08] and Stark [Sta08b] likewise does not
sample precincts independently and can consequently per-
form better than NEGEXP.

The main idea is to construct a probability distribution
P = (P1, P2, . . . , PN ) and then sample n precincts (with re-
placement) where the probability of precinct p is Pp. The
unique precincts sampled are then audited. If the sum
of discrepancy bounds

∑N
p=1 up is less than M , then the

outcome must be correct—see Appendix C—so we assume
that M ≤

∑N
p=1 up. Once we have this, all that remains is
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the choose the number of sampling rounds n such that the
confidence is at least c.

Following [APR08, Sta08b, Dop08], we construct the
probability distribution P = (P1, P2, . . . , PN ) where Pp =

up

/
∑N

k=1 uk. For any subset S ⊂ {1, 2, . . . , N} of the
precincts, the probability of sampling a precinct in S in
one round is

∑

p∈S Pp. If
∑

p∈S up ≥M , then

Pr[sampling from S] =

∑

p∈S up
∑N

p=1 up

≥
M

∑N
p=1 up

. (4-20)

Therefore, the chance Π of not sampling from S in n rounds
is bounded above by

Π ≤

(

1−
M

∑N
p=1 up

)n

. (4-21)

Since we want Π ≤ 1− c, we set

n =

⌈

log(1− c)

log
(

1−M
/
∑N

p=1 up

)

⌉

. (4-22)

Using this choice of n, we can prove that for the
same confidence c, the probability of sampling precinct
p is smaller using PPEBWR than using NEGEXP; see
Appendix D. Since PPEBWR does not perform a sim-
ple random selection of precincts, it can perform better
than Saltman’s method in the case of uniformly sized
precincts. A given precinct p is audited with probability
PPPEBWR

p = 1 − (1 − 1/N)log1−b/N (1−c) using PPEBWR

while p is audited with probability P Saltman
p as given in

Inequality (4-18). As Figure 2 shows, as the number of bad
precincts relative to N increases, the number of precincts
audited by PPEBWR relative to Saltman’s method de-
creases. In addition to being more efficient, PPEBWR re-
quires fewer random numbers, n instead of N , which are re-
quired for methods that audit each precinct independently
at random. As with NEGEXP, using Stark’s pooling rule
allows PPEBWR to handle undervotes and overvotes

4.11 Sequential auditing with PPEBWR:
dealing with discrepancies

All of the post-election auditing methods discussed so far
have not addressed the question of what to do when dis-
crepancies in the vote tallies are discovered. It is clear that
further investigation is required, but what should the fur-
ther investigation entail? By contrast, Stark proposes a
sequential auditing method that either confirms the elec-
tion outcome with confidence level c or an audit of every
precinct is performed [Sta08a, Sta08b, Sta08c].

The auditing method works by performing some number
of rounds of sampling. For each round r, a additional num-
ber of precincts nr−nr−1 are sampled with replacement ac-
cording to a probability distribution P = (P1, P2, . . . , PN ).
A test statistic tr is computed for each round as is a maxi-
mum p-value for tr. If the p-value is less than the per-round

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

Fraction of bad precincts

Pr
ob

ab
ili

ty
of

ap
re

ci
nc

ta
ud

ite
d

by
PP

EB
W

R
ov

er
th

ep
ro

ba
bi

lit
ya

ud
ite

d
by

Sa
ltm

an
's

m
et

ho
d

Figure 2: A plot of P PPEBWR
p /P Saltman

p as a function of the
fraction of total precincts which are bad with N = 1000 and
c = 0.95.

significance level αr, then the outcome is confirmed and the
procedure stops. Otherwise a new round is begun.

For each precinct p, let wp be a monotonically increasing
function and w−1

p (t) = sup {q ∈ R : wp(q) ≤ t}. The test
statistic is the maximum of wp(ep) for each p in our sample.
That is, in round r, if we have sampled the precincts Sr,
then

tr = max
p∈Sr

wp(ep). (4-23)

The functions wp let us weight the discrepancies we discover
independently in each precinct. For example, if wp(q) = q,
then we weight each discrepancy identically.

The p-value of round r the test is the probability that a
sample of nr precincts has wp(ep) ≤ tr for each precinct p in

the sample Sr given that
∑N

p=1 ep ≥ M . This depends on
the probability distribution P, which we will pick shortly.

For every real number t, define

Tt = {p ∈ {1, 2, . . . , N} : wp(ep) > t}. (4-24)

Note that for all p /∈ Tt, w−1
p (t) ≥ ep. Assuming that

the null hypothesis holds—that is, the reported outcome is
incorrect—it must be the case that

∑N
p=1 ep ≥ M . Then

for any real t,

∑

p∈Tt

(

up − w−1
p (t)

)

=
∑

p∈Tt

up +
∑

p/∈Tt

w−1
p (t)−

N
∑

p=1

w−1
p (t)

≥
∑

p∈Tt

up +
∑

p/∈Tt

ep −
N
∑

p=1

w−1
p (t)

≥M −
N
∑

p=1

w−1
p (t),

(4-25)
where the first inequality comes from w−1

p (t) ≥ ep for p /∈ Tt

and the second comes from up ≥ ep and the sum of the ep

being at least M .
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As an aside, using Inequality (4-25) and a given value t,
we can bound the the number of draws n required to find
an element in Tt with probability at least c assuming we
sample each precinct p (with replacement) with probability

Pp =
up − w−1

p (t)
∑N

k=1

(

uk − w−1
k (t)

)
. (4-26)

We can easily check if a given p is in Tt by performing
the audit and checking wp(ep) > t. If we find no such
precincts, then we should reject the null hypothesis. This
is an extension of the PPEBWR method of the previous
section to account for discrepancy.

Instead, we want to calculate the p-value of round r.
Since we do not know tr until after we sample, we choose
the wp such that the Pp in Equation (4-26) does not depend
on t. Let wp(q) = q/up. Then w−1

p (t) = t · up and thus,

Pp =
(1− t)up

∑N
k=1(1− t)uk

=
up

∑N
k=1 uk

. (4-27)

This probability is exactly the same as for PPEBWR.
Now, the chance that a single sample from P will be in
Ttr is

∑

p∈Ttr
Pp. From Inequality (4-25), it is clear that

∑

p∈Ttr
up ≥M −

∑N
p=1 w−1

p (tr). Therefore,

∑

p∈Ttr

Pp ≥
M − t

∑N
p=1 up

∑N
p=1 up

=
M

∑N
p=1 up

− t. (4-28)

Each round has nr samples (with replacement) so the prob-
ability that all elements of Ttr are missed is at most the
p-value of the test in round r

p(r) =

(

1−
M

∑N
p=1 up

+ t

)nr

. (4-29)

If p(r) < αr, then we can confirm the election outcome.

All that remains is to pick the sample sizes nr and the
per-round significance levels αr. Any way of picking the nr

works as long as nr−nr−1 ≥ 1. The per-round significance
levels should be chosen such that their sum is at most α =
1−c. For example, αr = α/2r or if the sample size selection
rule ensures that all precincts are sampled by round R, then
αr = α/R suffices.

The full procedure is [Sta08b]:

1. Set r ← 1, n0 ← 0, S0 ← ∅.
2. Sample nr−nr−1 times from P, getting the set S and

set Sr ← Sr−1 ∪ S.
3. Audit precincts in Sr that haven’t yet been audited.
4. If Sr = {1, 2, . . . , N}, the true outcome is known so

stop. Otherwise calculate tr = maxp∈Sr wp(ep) and
p(r) from Equation (4-29).

5. If P (r) < αr, confirm the outcome and stop. Other-
wise, set r ← r + 1 and go to step 2.

If the procedure ends in round r, then the probability of
incorrectly confirming the outcome is less than αr. By the
union bound, if the procedure ends before a full recount,
then the probability of incorrectly confirming the outcome
is less than

∑

r αr ≤ α = 1− c.
By applying Stark’s sequential auditing method to the

PPEBWR method of Aslam et al., we have a test that can
confirm an election outcome, even in the case of discrepan-
cies found during the audit. The question of how exactly
to choose the sample sizes and the per-round significance
levels remain to be answered. One could select the initial
sample size using the value of n given in Equation (4-22)
for PPEBWR. Alternatively, one could optimize the values
to increase the power of the test for the same confidence
level.

4.12 Ballot-based auditing

As mentioned above, ballot based auditing is typically not
an option due to the lack of availability of electronic ballots.
However, the mathematics behind the selection of audits to
sample is exactly the same as presented in Subsection 4.5
where we make the modification of letting N be the num-
ber of ballots rather than the number of precincts and b
being the number of bad ballots. It is important that N
be the number of ballots rather than the number of votes
since fraud can be hidden in spoiled and undervoted ballots
which may not be counted in a vote count [Dop08].

Calandrino et al. [CHF07] suggest a method of using spe-
cialized scanning/printing machines to perform most of the
work of an audit. It also allows the use of ballot based
auditing even for electronic voting machines that do not
maintain electronic ballots. Rather than manually audit-
ing a precinct, the paper ballots—for example the output
of the printer of a DRE—are scanned in some order and a
unique serial number is printed sequentially on the ballots.
At the end of the scanning, a list of votes on each ballot
and the corresponding serial number is printed. If the tally
of votes does not match the initially reported tally, then
further investigation must happen. Otherwise, the scan-
ning/printing machine is audited itself. The ballots must
be checked for a unique serial number and then a random
sample are checked against the printed results.

There are several choices of how to perform the audit.
In the first, the number n(N, b, c) from Subsection 4.5 is
computed where N is the number of total ballots and b
is the number of fraudulent ballots. Each precinct is as-
signed a range of numbers between 1 and N according
to the number of reported ballots. Then n(N, b, c) num-
bers between 1 and N are chosen and the corresponding
ñ ≤ n(N, b, c) precincts are machine audited as described
above. One ballot from each precinct is chosen uniformly
at random from each of the ñ precincts and the remain-
der of the n(N, b, c) − ñ ballots are chosen uniformly at
random from the entire pool of machine audited ballots.
These ballots are then checked against the results printed
by the scanner/printer as described above.
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Another option is to select the precincts according to
one of the methods described above. Those precincts are
machine audited and the number of hand audits is based
on the probability of sampling k ballots in a precinct of size
m given that at least one is sampled:

(

m
k

)

P k(1− P )m−k

1− (1− P )m
, (4-30)

where P = 1− (1− c)1/b is the probability that a ballot is
chosen given b bad ballots.

Since audits are useful for more than detecting fraud—
e.g., for uncovering malfunctioning equipment or electoral
processes—all elections should have a mandatory 1% audit.
For example, in a state-wide election, the audit procedure
may select fewer than 1% of the precincts. In that case,
the remainder of the precincts may be audited uniformly
at random to bring the total number up to 1%. In states
such as California where fixed percentages are mandated,
this provides a way to comply with the law while still hav-
ing the confidence level that following the auditing method
alone confers.

5 Performing the audit

Once the precincts to audit have been selected, there is
the question of how the audit should be performed. Ap-
pel [App07] distinguishes between three types of audits.
The first is an audit without hand recount. In this type
of audit, the vote total printed by each voting machine in
the precinct will be compared to the total contained in the
memory card. The second is a hand recount of a single race
in the precinct. The third is a hand recount of all races in
the precinct. An additional type of audit is a machine as-
sisted audit as suggested by Calandrino et al. [CHF07] as
described in Subsection 4.12.

Wherever feasible, the printed total tape for each elec-
tronic voting machine should be compared against the
memory card when the card is inserted into the EMS.
Checking the value on the card as compared to a printed
tape should not take a significant amount of extra time per
memory card. Some electronic voting machines—such as
Premier’s AccuVote TS—allow aggregating the counts of
multiple machines onto a single memory card. This should
be avoided, both to prevent potential spread of voting ma-
chine viruses—see Section 2—and to maintain one mem-
ory card and total tape per machine. If this is not feasible
because there are simply too many DREs and all of the
machines at the precinct level are combined, then the tape
totals should be compared to the memory card ultimately
used in the EMS.

When performing an audit to check for systemic prob-
lems with voting machines or electoral processes—for ex-
ample the 1% on top of whichever fraud-detection auditing
process is used—all of the races on a ballot should be hand

counted [App07]. To gain confidence in just a single race,
only that race needs to be recounted. However, election
officials may wish to recount all of the races on a ballot as
an added measure of confidence—especially if the cost of
recounting additional races is low as compared to the cost
of counting the first. This might be the case if physically
separating the ballots is required [GB07].

6 Conclusion

In order to gain confidence in an election outcome in the
face of vote miscounts and adversaries who wish to corrupt
the results, we use post-election auditing. Requiring abso-
lute certainty in an election outcome is not feasible so we
instead want statistical evidence that the outcome is cor-
rect. Simple auditing strategies such as fixed percentage
audits do not confer any statistical guarantees, especially
in smaller elections or elections with a large disparity in
precinct sizes.

If precincts have the same size, then we can compute
the number of precincts necessary to audit uniformly at
random to achieve a particular confidence level for an as-
sumed maximum number of votes that have been shifted
from one candidate to another. This can be done exactly
by numerical optimization, or we can compute a conserva-
tive upper bound on the number. If precincts have different
sizes, we can lower bound the number of precincts that have
miscounts and then compute the audit size as before.

We can do better if we are willing to give up auditing
precincts uniformly at random. This has the potential
downside of causing voters in smaller precincts to feel as
if their votes count less. By considering upper bounds on
the amount of vote shifting in each precinct, we can sample
each precinct with probability 1 minus a negative exponen-
tial in the error bound. This makes any strategy to conceal
fraud as good as any other. Rather than sampling each
precinct with probability independent of the others, we
can do even better by sampling (with replacement) from a
probability vector where the probabilities are proportional
to the error bounds.

Using sequential auditing methods, we can handle dis-
crepancies in the audit by increasing the size of the audit
until either we are convinced that the outcome is correct,
or we have audited every precinct. There is more work to
be done in this respect. The parameters αr, and nr are
left unspecified. While the test is correct no matter how
they are chosen so long as the sum of the αr is at most α
and nr − nr−1 ≥ 1, there may be a way to choose them
to optimize the power of the test. A more powerful test
would allow the election outcome to be confirmed using
fewer rounds of sampling.

There are several ways in which one could potentially
increase the power of the audits. Stark suggests apply-
ing ideas from sequential analysis [Sta08a] using methods
from financial auditing [Sta08b]. Another way would be
to combine historical knowledge of how a given precinct
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voted in the past on similar issues. There is a large corpus
of voter history. For example, the University of California,
Berkeley’s Statewide Database contains election data at the
precinct level including voting, registration, and geographic
data from a number of elections from 1996 onwards [SWD].
This historical data could be combined with the reported
votes in a precinct to determine where evidence of mis-
counts or fraud is most likely.

Redistricting is a potential problem. Once the district’s
boundaries change, the voting history is no longer com-
pletely valid. One possible solution to this problem would
be to use geographic data to identify districts in close prox-
imity and use a weighted average. Thus, even when dis-
tricts change, the general history of the region is main-
tained.

Another factor that would need to be accounted for is
variance in voting history. In a district that consistently
votes for a particular party, fraud would be more likely to
be noticed than in a less consistent district. As a result,
all else being equal, audits should occur with higher proba-
bility in the districts with a higher variance. For example,
the NEGEXP method of Subsection 4.8 could potentially
be extended to account for error bounds, result difference
from voting history and variance of historical data in a way
that makes every strategy for fraud based on both size and
historical variance as effective as any other.

There seems to be a dearth of election research in this di-
rection. The Brennan Center for Justice’s report [NBHC07]
cites An assessment of the May 2006 Election Recount and
a Proposed Permanent Recount Sample Design by Kalsbeek
and Zhang of the University of North Carolina at Chapel
Hill, School of Public Health’s Survey Research Unit as
advocating using historical data in election audits. This
report does not seem to be publicly available at this time.

Another direction for future research is gaining confi-
dence in multiple races simultaneously. A typical elec-
tion consists of a number of races, potentially comprised
of statewide races as well as a number of local races. Not
every precinct would vote on an identical set of races but
rather on some subset of the total races. All of the audit
methods discussed in this paper considered a single race at
a time—with the exception of the suggested mandatory 1%
audit of all races. To complicate matters further, we might
desire different confidence levels in each race. For example,
we might require a confidence of 99% for a statewide race
whereas for a city race, we might accept a confidence of
only 95%.

In the case of multiple races, auditing each race inde-
pendently is likely to be inefficient since there is overhead
associated with each precinct audited that is independent
of the number of races being audited. Similarly, selecting
each precinct to audit by using the maximum confidence re-
quired of any race in the precinct is likely to be inefficient.
For example, a precinct with a number of races with a wide
margin and one with a small margin could have all of its
races audited with unnecessarily high probability. More re-

search is required to audit multiple races simultaneously to
achieve a given set of confidence levels without performing
an excessive amount of work.
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A Arithmetic geometric harmonic

means inequality

Proposition A.1 (Arithmetic-geometric-harmonic means
inequality). Given any set of positive, real-valued numbers
x1, x2, . . . , xk, the arithmetic, geometric, and harmonic
means are related by

1

k

k
∑

i=1

xi ≥
k

√

√

√

√

k
∏

i=1

xi ≥ k

(

k
∑

i=1

1

xi

)−1

. (A-1)

Proof. To see the first inequality, let µ = (1/k)
∑k

i=1 xi be

the arithmetic mean and ρ =
∏k

i=1 x
1/k
i be the geometric

mean. From elementary calculus, ex − x − 1 has a global
minimum at x = 0 so ex ≥ x+1 for all real values x. Since
each xi > 0, µ > 0 and thus

exp

(

xi

µ
− 1

)

≥
xi

µ
, (A-2)

for each i. Taking products of both sides, we have

k
∏
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exp
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µ
− 1
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≥
k
∏

i=1
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µ
(A-3)

exp

(

k
∑

i=1
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µ
− k

)

≥
ρk

µk
(A-4)

Since
∑k

i=1 xi = kµ, the left-hand side of Inequality (A-4)
is e0 = 1 so by taking kth roots, we have µ ≥ ρ.

To prove the second inequality in Inequality (A-1), we
employ the first. By the arithmetic-geometric means in-
equality, we have

1

k

k
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1
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1

x
1/k
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(A-5)

and thus by taking the inverse,

k

(

k
∑

i=1

1

xi

)−1

≤ k

√

√

√

√

k
∏

i=1

xi. (A-6)

B Bounds for optimal sample size

without replacement

We follow [APR07] to derive the upper and lower bounds
for sample size without replacement when precincts have
equal size.
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B.1 Weak upper bound

To compute the weaker upper bound in Equation (4-5), we
use the dual equation for e(N, b, n) in Equation (4-11).

e(N, b, n) =

b−1
∏

k=0

(

1−
n

N − k

)

≤
b
∏

k=0

(

1−
n

N

)

=
(

1−
n

N

)b

.

(B-1)

Recall that we wish to bound e(N, b, n) by the signif-
icance level α. Combining that with Inequality (B-1), it
suffices to bound

(

1−
n

N

)b

≤ 1− c. (B-2)

Solving Inequality (B-2) for n = n(N, b, c) and writing
(1 − c)1/b as exp(log(1 − c)/b), we get the bound in
Equation (4-5):

n(N, b, c) ≥ N
(

1− exp(log(1− c)/b)
)

. (B-3)

B.2 Tight upper bound

We get a tighter upper bound by using the arithmetic-
geometric-harmonic means inequality in Proposition A.1
together with Equation (4-11). We first write e(N, b, n) =
(e(N, b, n)1/b)b and then we use the arithmetic-geometric
means inequality to get

e(N, b, n) =

(

b−1
∏

k=0

(

1−
n

N − k

)1/b
)b

≤

(

1

b
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=
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n

b
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∑

k=0

1

N − k

)b

.

(B-4)

Since we want to bound e(N, b, n) ≤ 1− c, we solve

(

1− n
1

b

b−1
∑

k=0

1

N − k

)b

≤ 1− c (B-5)

for n, getting

n ≥ b

(

b−1
∑

k=0

1

N − k

)−1

· (1− (1− c)1/b). (B-6)

This is a conservative upper bound on the optimal number
nOPT(N, b, c) of precincts we need to audit; however, by

using the arithmetic-harmonic means inequality, we have

b

(
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∑
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1

N − k

)−1

≤
1

b

b−1
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k=0

(N − k)

=
1

b

(

N(N + 1)

2
−

(N − b)(N − b + 1)

2

)

= N −
b− 1

2
.

(B-7)
We can now replace Inequality (B-6) with the slightly
weaker inequality given in Inequality (4-12):

n(N, b, c) ≥

(

N −
b− 1

2

)

(

1− exp(log(1− c)/b)
)

. (B-8)

This has the advantage of being much easier to calculate
on a standard hand calculator.

B.3 Lower bound

The computation of the lower bound is similar to the weak
upper bound. We start with Equation (4-11) to get

e(N, b, n) =

b−1
∏

k=0

(

1−
n

N − k

)

≥

(

1−
n

N − b + 1

)b

.

(B-9)
For e(N, b, c) > 1− c, we must have

n <
(

N − (b− 1)
)(

1− (1− c)1/b
)

, (B-10)

whence we get a lower bound on nOPT(N, b, c):

nOPT ≥
⌈

(

N − (b− 1)
)(

1− (1− c)1/b
)

⌉

, (B-11)

where the ceiling comes since nOPT must be an integer.
We can now bound how far n(N, b, c) is from the opti-

mum nOPT(N, b, c). Since we need n(N, b, c) to be integral,
we let

n(N, b, c) =

⌈(

N −
b− 1

2

)

(1− α1/b)

⌉

(B-12)

where α = 1− c and subtract to get

n(N, b, c)− nOPT(N, b, c) ≤
b− 1

2
(1− α1/b) + 1 (B-13)

where the + 1 comes from dxe − dye ≤ dx − ye+ 1. Note
that this difference is independent of N . For a fixed 0 <
α < 1, let D(b) = (b− 1)(1−α1/b)/2 + 1 be the difference.
Computing the first derivative of D, we get

D′(b) =
1

2

(

1− α1/b +
α1/b(b− 1) log α

b2

)

=
1

2b2

(

b2(1− α1/b) + bα1/b log α− α1/b log α
)

(B-14)
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Since − logα > 0, we can drop the last parenthetical term
and simplify to get

D′(b) >
1

2b2

(

b2(1− α1/b) + bα1/b log α
)

=
α1/b

2b

(

b(α−1/b − 1) + log α
)

.

(B-15)

Since ax = exp(x log a) and ex ≥ 1 + x for all real x (see
Appendix A),

exp

(

−
1

b
log α

)

≥ 1−
1

b
log α. (B-16)

Plugging this into Inequality (B-15), we get

D′(b) >
α1/b

2b
(− log α + log α) = 0. (B-17)

Since the derivative of D is always positive (for b > 0), the
difference between n(N, b, c) and nOPT(N, b, c) is strictly
increasing in b. In the limit as b→∞, we find

lim
b→∞

D(b) = 1 + lim
b→∞

1− α1/b

2
b−1

= 1− lim
b→∞

α1/b log α
2b2

(b−1)2

= 1−
log α

2
.

(B-18)

Thus,

n(N, b, c)− nOPT(N, b, c) ≤ 1 +

⌈

−
log(1− c)

2

⌉

, (B-19)

which matches Inequality (4-13).

C Condition for certifying the elec-

tion

Following [Sta08a], we show that if E < M , then the appar-
ent set of winners Kw must be the actual winners. We can
actually do much better than this by considering pairwise
discrepancies, but the calculations are much more com-
plex [Sta08c]. To simplify the notation, define the function
(·)+ : R → R≥0 by (x)+ = max{x, 0}. In this notation,
Equation (4-2) becomes

ep =
∑

k∈Kw

(vk,p − ak,p)+ +
∑

k∈Kl

(ak,p − vk,p)+. (C-1)

Define the net discrepancy to be

E =
∑

k∈Kw

(Vk −Ak)+ +
∑

k∈Kl

(Ak − Vk)+. (C-2)

For the election outcome to be correct, it must be the
case that the number of votes for each of the apparent

winners is greater than the number of votes for each of
the apparent losers. In symbols,

D = min
k∈Kw

Ak − max
k∈Kl

Ak > 0. (C-3)

We can bound this difference D from below by

D ≥
(

min
k∈Kw

Vk − max
k∈Kw

(Vk −Ak)+

)

−
(

max
k∈Kl

Vk + max
k∈Kl

(Ak − Vk)+

)

≥
(

min
k∈Kw

Vk −
∑

k∈Kw

(Vk −Ak)+

)

−
(

max
k∈Kl

Vk +
∑

k∈Kl

(Vk −Ak)+

)

= M − E .

(C-4)

From Inequality (C-3), if E < M , then the apparent win-
ners must be the actual winners. All that remains is the
bound the net discrepancy E from above by the total dis-
crepancy E.

For any set of real numbers S,

∑

x∈S

(x)+ =
∑

x∈S
x>0

x =

(

∑

x∈S
x>0

x

)

+

≥
(

∑

x∈S

x
)

+
. (C-5)

Expanding Equation (C-2), we have

E =
∑

k∈Kw

(

N
∑

p=1

(vk,p − ak,p)
)

+
+
∑

k∈Kl

(

N
∑

p=1

(ak,p − vk,p)
)

+

≤
N
∑

p=1

(

∑

k∈Kw

(vk,p − ak,p)+ +
∑

k∈Kl

(ak,p − vk,p)+

)

.

(C-6)

Combining with Equation (C-1) and E =
∑N

p=1 ep, we get
E ≤ E and thus if E < M , then the election can be certified.

D Demonstrating the efficiency of

PPEBWR over NEGEXP

To see that PPEBWR is more efficient than NEGEXP, it
suffices to consider a single precinct p and show that the
probability of auditing p is smaller with PPEBWR than
NEGEXP for a given confidence level c [APR08]. That is,
we need to show

1−
(

1−
up

U

)n

≤ 1− αup/M , (D-1)

where U =
∑N

p=1 up, α = 1 − c, and n ≥ log1−M/U (α) by
Equation (4-22). In particular, we need to show

(

1−
up

U

)n

≥ αup/M . (D-2)
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By straight-forward algebraic manipulation, we have

(

1−
up

U

)n

≥
(

1−
up

U

)log
1−M/U (α)

=

(

(

1−
up

U

)U/up
)(up/U) log

1−M/U (α)

.

(D-3)

If we require that up ≤M for all precincts p—a reasonable
requirement since we may cap up at M when deciding error
bounds without loss of statistical power or confidence—
then since (1 − 1/x)x is strictly increasing for x ≥ 1, we

may substitute (1−M/U)U/M ≤ (1− up/U)U/up to get

(

1−
up

U

)n

≥

(

(

1−
M

U

)U/M
)(up/U) log

1−M/U (α)

=

(

1−
M

U

)(up/M) log
1−M/U (α)

= αup/M ,

(D-4)

as required. Thus PPEBWR samples each precinct with
probability bounded above by that of NEGEXP—for the
same confidence level—so PPEBWR is more efficient.
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