Return-Oriented Programming
without Returns

Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko,
Ahmad-Reza Sadeghi, Hovav Shacham, Marcel Winandy

ACM CCS 2010, Chicago, USA

& m
@ UCSDCSE System Security Lab
Computer Science and Engineering

L-., Ruhr-University Bochum

Motivation for ROP

e Ad hoc defense against code injection:
o WeX
+ DEP

e Code injection unnecessary for arbitrary
computation

e Use existing code to synthesize new behavior

SN

& m |
@ UCSDCSE System Security Lab

eeeeeeeeeeeeeeeeeeeeeeeeeeeee L-, Ruhr-University Bochum

Overview of (traditional) ROP

o Stack is the program | (¢2%) |

+ Pointers to code > InSns...ret
(data)

+ Data s insns...ret

e EXxecution proceeds > insns...ret
by changing the (data)
stack pointer (data)

> insns...ret

e Turing-complete ©sp—

SN

& m |
@ UCSDCSE System Security Lab

Computer Science and Engineering m RUhr-UniverSity Bochum

Defenses

e Control-flow integrity
[Abadi et al. CCS’05, Erlingsson et al. OSDI'06]

+ Defends against an entire class of memory error
vulnerabilities

e Count frequency of ret instructions

e Use LIFO invariant of the call stack
+ Maintain shadow call stack

e Modify compiler to avoid emitting ret

Instructions
'/“} m System Security Lab ‘
@ e i L-.’ Ruhr-University Bochum

Deconstructing the ret

e Copy top of stack to instruction pointer
Transfers control

e Increment stack pointer

Updates processor state

@ UCSDCSE “ll System Security Lab
Computer Science and Engineering

‘_-., Ruhr-University Bochum

Update-Load-Branch

[pop %eax]

add 9%4,%eax
jmp *%eax

jmp *(%eax)

pop %eax iInc %eax
jmp *(%eax) jmp *(%ebx,%eax,4)

“n 6
Syth urity Lab

Ruhr-University Bochum

Removing the rets

(add %eax, %ec:)q (add %eax, %ecx

ret > pop %ebx
\jmp *%Y%oebx

J

@ UCSDCSE “ll System Security Lab

eeeeeeeeeeeeeeeeeeeeeeeeeeeee E’ Ruhr-University Bochum

Key insight

e Only need one
update-load-branch
sequence

e edx points to ULB —) {

& m
@ UCSDCSE System Securly hab

eeeeeeeeeeeeeeeeeeeeeeeeeeeee Ruhr-University Bochum

add
jmp

%eax, %ec
*%edx

Xl

POPp
Jmp

%ebx
*%%ebx

ARM - Overview

« ARM stands for Advanced RISC Machine

Application area: Embedded systems

+ Mobile phones, smartphones (Apple iPhone, Google Android),
music players, tablets, netbooks

Advantage: Low power consumption
ARM features XN (eXecute Never) Bit
Follows RISC design

+ Mostly single-cycle execution

+ Dedicated load and store instructions
+ Fixed instruction length

@ m
@ UCSDCSE System Security Lab

Computer Science and Engineering m RUhr-UniverSity Bochum

ARM Registers

 ARM's 32 Bit processor features 16 registers

* In contrast to Intel x86, each register is directly accessible
+ E.q.,itis possible to directly change the program counter (r15)

Scratch Register

Function o 0]
arguments rl Stack Pointer
and results 2 Link Register
from function Register Proaram Counter
r3 variables — 9

(callee saved)

Control Program I
Status Register Cpsr

N “ n 10
, System Security Lab

W) UCSDCSE
IS Computer Science and Engineering ‘-l RUhr-UniverSity Bochum

ARM Calling Convention

« AAPCS - ARM Architecture Procedure Call Standard

 No dedicated call and return instructions

+ Instead any jump instruction can be used as call and return resp.
* Function Call

+ BL — Branch with Link

+ BLX - Branch with Link and Exchange (allows indirect calls)
+ BL and BLX load the return address into the link register (r14)

* Function Return
+ Loading return address into program counter

@ UCSDCSE “ll System Security Lab

eeeeeeeeeeeeeeeeeeeeeeeeeeeee ‘=, Ruhr-University Bochum

The BLX Instruction

 (Candidates for an attack on ARM

+ All indirect jump instructions not part of a function epilogue
» Instructions where pc is used as destination register
» Indirect branch instructions, e.g., BLX

* We inspected libc and libwebcore on Android 2.0
+ Result: Many sequences end with a BLX instruction

Branch to reg@
, I Store return address
el EEGEEEEE in link register
Instruction set
exchange

= m . 12
%) LUCSDCSE System Security Lab

A ,/" Computer Science and Engineering m RUhr-UniverSity Bochum

Trampoline (Update-Load-Branch)

« Trampoline sequence for ARM
+ Unfortunately no POP-BLX sequence in our libraries

+ Update-Load-Branch sequence
» Initialize a register (r;) so that it points to injected jump addresses
» Update the state of r; after each sequence
» Load a second register (r;) with the address of the next sequence pointed by r,
» Branch with BLX to the address stored in r,

Register r, Sequence 1
Jump Address 1 I ------- ; Jump ! ¥ instruction
| Addresses : instruction

| i . BLX Trampoline

-------- Jump Address 1 |-~ Trampoline

r; — points to jump
addresses

ADDS r6,#4

r, — address of next | Tj
sequence

Memory under LDR r5,[r6,#124]
control of adversary BLX r5

= m . 13
%) LUCSDCSE System Security Lab

A /’ Computer Science and Engineering m RUhr-UniverSity Bochum

Attack Design and Memory Layout

v

l Trampoline '

Jump
Addresses

» Jump Address 3

» Jump Address 2

;l Jump Address 1
Argument 1

UCSDCSE

Computer Science and Engineering

|

Argument 2

Arguments

Memory under
control of adversary

GADGET 2

Sequence 1

instruction
instruction

9 { BLX Trampoline

Sequence 2

instruction
instruction

Sequence 1

instruction
instruction

{BLX Trampoline

r, — Pointer to arguments (sp)
r; - Pointer to jump addresses

Hll System Security Lab
Ruhr-University Bochum

14

Conclusion

* Our results
+ Return address checkers can be bypassed
+ Showed return-oriented programming without returns
+ We derived a Turing-complete gadget set for x86 and ARM
+ Attack instantiation on Debian (x86) and Android (ARM)

 Implications
+ Return-oriented programming (without returns) is a serious problem

+ Will become crucial attack technique in future and effective
countermeasures are needed

+ We show how to use it to mount a privilege escalation attack on
Android (upcoming paper at ISC 2010)

— m
| 15
@ UCSDCSE,E . System Security Lab

Camputer Science and Engieering ‘_-., Ruhr-University Bochum

Questions?

Thank you for your
attention

o)
=

The History of ROP

2007 Intel x86

2008 SPARC Atmel AVR

Internet Adobe
~ Explorer ~ Reader
2010 — -l
Apple Quicktime
- aiIbreak Player

/—\ 17
@ UCSDCSE HII System Security Lab

Computer Science and Engineering m RUhr-UniverSity Bochum

2009

