
System Security Lab
Ruhr-University Bochum

Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko,
Ahmad-Reza Sadeghi, Hovav Shacham, Marcel Winandy

ACM CCS 2010, Chicago, USA

System Security Lab
Ruhr-University Bochum

  Ad hoc defense against code injection:
◆  W⊕X
◆  DEP

  Code injection unnecessary for arbitrary
computation

  Use existing code to synthesize new behavior

2

System Security Lab
Ruhr-University Bochum

  Stack is the program
◆  Pointers to code
◆  Data

  Execution proceeds
by changing the
stack pointer

  Turing-complete

(data)
insns…ret

(data)
insns…ret
insns…ret

(data)
(data)

insns…ret

3

esp

System Security Lab
Ruhr-University Bochum

  Control-flow integrity
 [Abadi et al. CCS’05, Erlingsson et al. OSDI’06]

◆  Defends against an entire class of memory error
vulnerabilities

  Count frequency of ret instructions
  Use LIFO invariant of the call stack

◆  Maintain shadow call stack
  Modify compiler to avoid emitting ret

instructions

4

System Security Lab
Ruhr-University Bochum

  Copy top of stack to instruction pointer

  Increment stack pointer

5

Transfers control

Updates processor state

System Security Lab
Ruhr-University Bochum

6

inc %eax
jmp *(%ebx,%eax,4)

pop %eax
jmp *(%eax)

pop %eax
jmp *%eax

add $4,%eax
jmp *(%eax)

System Security Lab
Ruhr-University Bochum

7

add %eax, %ecx
ret

add %eax, %ecx
pop %ebx
jmp *%ebx

System Security Lab
Ruhr-University Bochum

  Only need one
update-load-branch
sequence

  edx points to ULB

8

add %eax, %ecx
jmp *%edx

pop %ebx
jmp *%ebx

System Security Lab
Ruhr-University Bochum

•  ARM stands for Advanced RISC Machine
•  Application area: Embedded systems

◆  Mobile phones, smartphones (Apple iPhone, Google Android),
music players, tablets, netbooks

•  Advantage: Low power consumption
•  ARM features XN (eXecute Never) Bit
•  Follows RISC design

◆  Mostly single-cycle execution
◆  Dedicated load and store instructions
◆  Fixed instruction length

System Security Lab
Ruhr-University Bochum

•  ARM‘s 32 Bit processor features 16 registers
•  In contrast to Intel x86, each register is directly accessible

◆  E.g., it is possible to directly change the program counter (r15)

10

r3!

r2!

r1!

r0! r4!

r5!

r6!

r7!

r8!

r9!

r10!

r11! cpsr!

r12!

r13/sp!

r14/lr!

r15/pc!

Function
arguments
and results

from function Register
variables

(callee saved)

Scratch Register
Stack Pointer
Link Register

Program Counter

Control Program
Status Register

System Security Lab
Ruhr-University Bochum

•  AAPCS - ARM Architecture Procedure Call Standard
•  No dedicated call and return instructions

◆  Instead any jump instruction can be used as call and return resp.

•  Function Call
◆  BL – Branch with Link
◆  BLX – Branch with Link and Exchange (allows indirect calls)
◆  BL and BLX load the return address into the link register (r14)

•  Function Return
◆  Loading return address into program counter

11

System Security Lab
Ruhr-University Bochum

•  Candidates for an attack on ARM
◆  All indirect jump instructions not part of a function epilogue

»  Instructions where pc is used as destination register
»  Indirect branch instructions, e.g., BLX

•  We inspected libc and libwebcore on Android 2.0
◆  Result: Many sequences end with a BLX instruction

12

BLX register!

Branch to register

Store return address
in link register

Instruction set
exchange

System Security Lab
Ruhr-University Bochum

13

•  Trampoline sequence for ARM
◆ Unfortunately no POP-BLX sequence in our libraries
◆ Update-Load-Branch sequence

»  Initialize a register (rj) so that it points to injected jump addresses
»  Update the state of rj after each sequence
»  Load a second register (rs) with the address of the next sequence pointed by rj
»  Branch with BLX to the address stored in rs

Jump
Addresses

Jump Address 1

Register rs

…
rj!

Jump Address 1
instruction!
instruction!
BLX Trampoline!

Sequence 1

Memory under
control of adversary

ADDS r6,#4!
LDR r5,[r6,#124]!
BLX r5!

Trampoline rj – points to jump
addresses!
rs – address of next
sequence!

System Security Lab
Ruhr-University Bochum

14

Jump
Addresses

Jump Address 2

Jump Address 1

Argument 1

Argument 2

Arguments

instruction!
instruction!
BLX Trampoline!

Sequence 1

instruction!
instruction!
BLX Trampoline!

Sequence 2

•  Take control over
pc
•  Setup ra, and rj

Trampoline

Adversary

rj!
ra!

Setup

Memory under
control of adversary

1

2

3

6

4

5

7

Jump Address 3

GADGET 1

GADGET 2

instruction!
instruction!
BLX Trampoline!

Sequence 1

10 8 9

ra – Pointer to arguments (sp)!
rj - Pointer to jump addresses!

System Security Lab
Ruhr-University Bochum

•  Our results
◆  Return address checkers can be bypassed
◆  Showed return-oriented programming without returns
◆  We derived a Turing-complete gadget set for x86 and ARM
◆  Attack instantiation on Debian (x86) and Android (ARM)

•  Implications
◆  Return-oriented programming (without returns) is a serious problem
◆  Will become crucial attack technique in future and effective

countermeasures are needed
◆  We show how to use it to mount a privilege escalation attack on

Android (upcoming paper at ISC 2010)

15

System Security Lab
Ruhr-University Bochum

16

System Security Lab
Ruhr-University Bochum

17

2007

2008

2009

2010

Intel x86

SPARC Atmel AVR

Z80 PowerPc ARM

Internet
Explorer

Adobe
Reader

Apple
Jailbreak

Quicktime
Player

