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Abstract claimed in the original machine count. Second, an IRV

Many organizations have turned to alternative voting sys-
tems such as instant-runoff voting for determining the out-
come of single-winner elections. It is our position in this
paper that the increasing deployment of such alternative
systems necessitate the study and development of risk-
limiting audits for these systems. We initiate this study.
We examine several commonly used single-winner vot-
ing systems and provide risk-limiting auditing procedures
for them. In many cases the methods from auditing plural-
ity contests can be applied with minor changes and little
loss in efficiency. For instant-runoff voting (IRV), the
situation is markedly different. We describe an algorithm
for auditing the candidate elimination order using plural-
ity methods which is risk-limiting. Standard risk-limiting
methods can be employed if the margin of the election
can be efficiently calculated or bounded. We provide effi-
ciently computable upper and lower bounds on the margin
and, when known, compare them to the exact margins.
Both auditing algorithms are potentially far less efficient
than the methods to audit other types of voting systems.

1 Introduction

A post-election audit is a procedure that compares elec-
tronic vote tallies with paper ballots in an attempt to
determine if the outcome is correct. For example in a
single-winner elections, the audit is to decide if the win-
ner is correct, not the tallies of the votes. A risk-limiting
audit is one for which there is a known probability — the
risk level — of certifying the reported outcome when it
is incorrect. In this paper we describe how to perform
risk-limiting audits for elections that use voting systems
other than plurality or first-past-the-post.

California law requires a 1% manual tally of each
election that compares the paper ballots to the machine
records. Municipal elections in San Francisco use instant-
runoff voting (IRV). For these IRV elections, the follow-
ing manual tally procedure is employed [29]. First, in
each randomly chosen precinct, the paper ballots are ex-
amined to determine the number of first-choice, second-
choice, and third-choice votes each candidate received:;!
these totals are compared against the corresponding totals

I'San Francisco allows voters to rank no more than three of the
candidates for each race.

elimination election is run with only the ballots from the
tallied precinct, and the winner of this mini election is
noted.

There is no reason to believe that the San Francisco
tally of IRV elections is a risk-limiting audit for any partic-
ular risk level. Indeed, the San Francisco Voting Systems
Task Force gives an example election in which two sets
of ballots that are identical under the tally procedure pro-
duce two different election outcomes [29, Appendix A].2
In this example election, running San Francisco’s man-
ual tally and finding no discrepancies does not increase
our confidence that the reported and actual winner are
the same! By contrast, San Francisco’s 1% manual tally
of a plurality election does provide a risk-measuring au-
dit, though the risk level depends on the election mar-
gin.

Plurality voting has many well-documented drawbacks
which has motivated the adoption of alternative voting
systems. Proponents of these systems claim that voters
can more clearly express their preferences and that the
election winners better reflect the aggregate opinion of
the electorate. Yet in the absence of a risk-limiting audit,
it is difficult to argue that voters’ preferences have been
correctly aggregated —to convince the loser that (s)he
lost.

It is our position in this paper that the increasing deploy-
ment of alternative voting systems such as IRV requires
the development of risk-limiting audits for these alterna-
tive systems. We initiate the study of risk-limiting audits
for a variety of alternative voting systems, by adapting
techniques previously used for auditing plurality elections.
An important ingredient in developing audits for these
systems is to calculate the margin of victory and how er-
rors in ballots affect the margin. In some cases calculating
the margin is intuitive, but it is harder to understand the
margin for IRV elections. There is likely room for sub-
stantial improvement over our audit techniques, and we
hope that future work will provide these improvements.

In this paper, we are concerned only with ballot-based,
risk-limiting audits. An audit is ballot-based if each ballot
cast in the election can be independently selected and

’Ina presentation at the EVN 2011 conference, Emily Shen gave
another such example.



compared to the corresponding paper ballot. A measure
of an auditing algorithm’s efficiency is the number of
ballots that must be examined in the case that the reported
outcome is correct. A simple risk-limiting audit compares
every electronic record to its paper ballot. This is clearly
inefficient since it requires examining each ballot.

Background: single-winner voting systems. An elec-
tion is single-winner if exactly one candidate is declared
the winner in each contest. In practice, not all elections
are single-winner; for example, the three candidates with
highest vote totals in a contest for city council might all
capture seats on the council. We focus on single-winner
elections in this paper to simplify the analysis, but our
techniques might extend to multiple-winner elections.

The most common single-winner voting system in
use is plurality voting—also called first-past-the-post
or winner-takes-all. Well-known deficiencies in plural-
ity voting have led to the development and use of other
single-winner systems such as approval voting, Condorcet
methods and instant-runoff voting (IRV). Arrow’s impos-
sibility theorem [1] and the Gibbard-Satterthwaite theo-
rem [14, 30] tell us that no non-dictatorial election method
based on preference ranking will simultaneously satisfy
several desirable fairness criteria. The field of social
choice theory is full of “paradoxes” of this nature that
highlight difficulty in aggregating individual preferences
into a group preference; more popular accounts can be
found in recent books [24, 27, 36].

In the academic literature on post-election auditing,
plurality voting has received the most attention, with very
little work on simple variants such as range voting, and
until very recently, almost no attention on elections using
ranked-choices (Condorcet, IRV). In this paper we show
that in many cases we can adapt or modify approaches
from risk-limiting audits of plurality voting to other single-
winner voting systems. However, in the case of IRV, the
auditing problem is more difficult and our approaches are
not as efficient as for other methods.

The apparent difficulty of auditing IRV is ironic. IRV
is a popular alternative to plurality voting because it pur-
ports to avoid the spoiler effect and encourages many
candidates to run. This can have policy benefits, as po-
litical parties can receive funding and recognition if they
capture the first preferences of a certain portion of the
electorate [26]. These benefits could be nullified if it is
difficult to ascertain that an IRV election was correctly
decided.

In this paper, we focus our attention on voting systems
that enjoy some level of popularity. Other, less used, vot-
ing systems are considered when the problem of auditing
such systems reduces to that of auditing more popular sys-
tems or when audit procedures can be obtained through
minor modifications to other techniques.

Our contributions. In this paper, we propose post-
election risk-limiting auditing schemes for several popular
single-winner voting systems and variants.

We classify the voting systems we study into two
groups: scored systems and ranked systems. We show
that the first group, which includes approval voting, range
voting, and Borda counts, can be audited using the anal-
ysis and algorithms from plurality election auditing. In
some cases, we are able to reduce auditing systems in
the second group to multiple-contest plurality elections.
We can then apply the method of Stark [35] to audit the
constituent plurality contests simultaneously with a given
total risk of making a mistake. In particular, we give
the first risk-limiting auditing algorithm for Condorcet
methods (when there is a Condorcet winner) and for IRV.

2 Non-plurality voting and related work

We divide election methods for single-winner contests
into two classes. These classes are distinguished by how
the system counts a user’s preference rather than how
the user expresses that preference. The first class, scored
systems, contains systems in which users’ preferences are
converted into a sequence of numerical scores for each
candidate. The second class, ranked systems, contains sys-
tems in which comparisons are made based on the rank-
ordering of candidates by the voters. Examples of the
former include plurality voting, approval and range vot-
ing, and the Borda count. Examples of the latter include
various Condorcet methods and instant-runoff voting.

Scored systems are perhaps the most familiar in mod-
ern day-to-day life. One might choose to “like” a piece of
information posted on a social networking site, implicitly
assigning a score of 1; and one often encounters restau-
rant reviews that assign ratings on a four-star scale. When
electing candidates, as with deciding which piece of in-
formation is most popular or deciding which restaurant
is best, the procedure is obvious: add up all of the scores
and pick the alternative with the highest score.

Ranked systems are less common and the procedure
for picking a winner is less straightforward. The social
choice literature is replete with methods of aggregating
preference rankings. Arrow’s Theorem shows that no ag-
gregation method can simultaneously satisfy a set of de-
sirable criteria, which means there is no “perfect” method.
The reasons for choosing one method over another in-
volve evaluating tradeoffs between different notions of
fairness or desiderata exogenous to the mathematics of
the method.

Approval and range voting. In approval voting, voters
simply mark “yes” or “no” for each candidate to indicate
whether or not they approve of them. Range voting al-
lows voters to assign a numerical score (e.g., 1 to 10) to
their approval to indicate the degree to which they ap-



prove of each candidate. In both cases, the candidate
with the highest number of points or “yes” votes wins.
Since voters can approve of more than one candidate,
advocates of approval and range voting claim? it avoids
the “spoiler effects” rampant in plurality voting, wherein
a third candidate siphons votes from one of the top two
candidates.

Borda counts. Many of the classical results in voting
date to the time of the French Revolution. In Borda count
elections, voters submit their preferences in terms of a
ranking of the candidates. Jean-Charles de Borda pro-
posed a method of tallying ranked ballots by assigning
points to each rank and giving these points to the candi-
dates [6, 15]. In a 5 candidate election, a voter would give
5 points to their first-ranked candidate, 4 to the second-
ranked, 3 to the third-ranked, and so on. Borda counts are
used for some political elections in Slovenia [11], as well
as the pacific island nations of Nauru and Kiribati [25], but
is most popular in the worlds of sports —e.g., the Heis-
man Trophy [17] — and academic professional societies.

Condorcet methods. Condorcet methods are a class of
voting systems in which voters rank candidates. For each
pair of candidates i and j, the electorate is said to prefer
i to j if more ballots rank i above j than vice versa. A
Condorcet winner, if one exists, is a candidate { who is
preferred to each other candidate. A tabulation method
satisfies the Condorcet criterion if it elects the Condorcet
winner when one exists. Any method that satisfies the
Condorecet criterion is a Condorcet method.

It is possible to write endlessly on Condorcet meth-
ods. Indeed, a search through the literature will turn up
a wide assortment of election mechanisms which satisfy
the Condorcet criterion in addition to a host of other crite-
ria. For descriptions and discussion of the most common
Condorcet methods prior to 1980, including Condorcet’s
original, see Fishburn [12] and Tideman [37]. In the latter
work, Tideman also describes his ranked pairs method
where each pair of candidates is compared on every ballot.
If there is a Condorcet winner, she is elected. Otherwise,
the winner is chosen by considering the magnitudes of the
victories in the pairwise elections. More recently, Markus
Schulze proposed what has become the most commonly
used Condorcet method, including by the Swedish Pi-
rate Party for primaries, the Wikimedia Foundation, the
Debian project, and the Gentoo project [32].*

Several Condorcet methods have been designed to sat-
isfy additional desirable criteria beyond the Condorcet

3See, for example http://rangevoting.org.

“Wikipedia lists 60 organizations which use the Schulze Method
in some form. http://en.wikipedia.org/w/index.php?
title=Schulze_method&oldid=434396935#Use_of__
the_Schulze_method Accessed 2011-06-15.

criterion such as the Condorcet loser criterion, the Smith
criterion (also called the generalized Condorcet crite-
rion), and the independence of clones criterion. The
social choice literature has extensively analyzed these
and other properties of voting systems. See Fishburn [12],
Woodall [38], Schulze [31, 32] and the references therein
for details.

Instant-runoff voting. In instant-runoff voting IRV) —
sometimes called the alternative vote (AV), ranked choice
voting (RCV), or, for the multiseat version, single trans-
ferable vote (STV) — voters also submit their preferences
as a (possibly truncated) ranked list of the candidates. It
is probably the most widely used non-plurality voting
system for political elections. The Australian House of
Representatives uses STV [9], as does the Republic of
Ireland for all public elections including presidential elec-
tions and elections to D4il Eireann — the lower house of
parliament [11]. The California cities of Berkeley, Oak-
land, San Francisco, and San Leandro use IRV for some
elections. In an IRV election, candidates are eliminated
sequentially, beginning with the candidate receiving the
fewest first-ranked votes. The ballots whose first-ranked
candidate was eliminated are assigned to their second-
ranked candidates. A more detailed description of IRV is
given in Section 4.2.

The IRV elections in Australia use paper ballots where
voters fill out an explicit ranking for all of the candidates.
The ballots are twice counted by hand under the watch of
“scrutineers” — the election observers [9]. In California,
voters only choose their top three choices, no matter how
many candidates are on the ballot.

California law mandates a 1% manual tally to validate
the outcome of an election. For IRV elections, this in-
volves selecting 1% of the precincts at random and for
each precinct, counting the number of first, second, and
third choices for each candidate, and then running a “mini-
IRV election using only the ballots for the precinct. This
is not a risk-limiting procedure and that data produced
by it (the tallies and within-precinct IRV winner) give
no information about the election as a whole [29, Ap-
pendix A].

One particularly challenging problem we consider is
computing the margin for an IRV election. Two recent
papers consider this problem as well. One, by Cary [7],
gives an algorithm that computes a lower bound for the
margin. Another, by Margino et al. [20], gives an algo-
rithm that for many real IRV elections is able to compute
the margin exactly. Though these papers were indepen-
dent of and simultaneous with our initial work, in this
revised version we make use of Cary’s lower bound, and
(where it is available) of Magrino et al.’s exact margin. To
these we add an algorithm for computing an upper bound
for the margin.
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Risk-limiting audits. In this paper we are interested in
the problem of auditing the outcome of an election. An
audit is a procedure in which samples of the ballots cast
in the election are drawn and compared to the electronic
record of the ballot used in the tally. The purpose of the
audit is to look for evidence that the reported winner is not
actually the winner. If the procedure does not find enough
such evidence, the reported winner is declared the true
winner. An audit procedure is called risk-limiting at risk
level o if the probability (over the sampling procedure)
that it incorrectly confirms the reported winner is less
than ¢. Our underlying assumption is that some of the
ballots may be miscounted due to human or machine error.

There has been a great deal recent work on performing
risk-limiting audits. See Checkoway et al. [8], Stark [35],
and the references therein for a thorough discussion.

We define the margin of an election to be twice the
number of erroneous ballots needed to change the winner
of an election. In the case of plurality elections, this is
the gap between the top two candidates when the that
gap is even, and one more than that when the gap is odd’
This margin can be computed for alternatives to plurality
voting as well. For example, consider an approval vote
election between two candidates. If all voters approve
of the first candidate but only half approve of the second
candidate, then the old margin is n/2. However, n/2 votes
need to be changed to change the outcome so the new
margin is n. For auditing purposes, we think this is the
right definition since it correctly mirrors the notion of
detecting an appropriate number of material errors in a
risk-limiting audit [34].

An important consideration for ballot-based audits is
that they be efficient in the sense that the number of re-
counted ballots required to certify the election should
not be too large. Many jurisdictions require an auto-
matic recount if the margin below a certain percentage
of the votes cast. For larger margins, it is desirable to
develop audits which require as few ballots as possible
to certify (when the outcome is correct) while remaining
risk-limiting (when the outcome is not).

Ballot errors and strategic voting. The auditing prob-
lem is different than the problem of strategic voting stud-
ied in social choice theory and elsewhere. Strategic voting
refers to the problem of voters casting ballots which do
not reflect their true preferences in the hopes of exploit-

SThere is actually a slight difference concerning ties and even vs.
odd margins which we will ignore in what follows. Additionally, when
the threshold percentage of votes a candidate needs to be elected is
different from 50%, for example a when a supermajority is required,
shifting a vote from the reported loser to the reported winner can change
the margin by less than 2 [16]. The factor of 2 in the definition of the
margin is simply to agree with the standard definition of a margin for a
plurality election and can safely be ignored in everything that follows if
one wishes to work directly with number of changed ballots.

ing the structure of the ballot tabulation system. It is
well known that many voting systems are susceptible to
strategic voting [13, 14, 30]. Determining if strategic
voting will work in a given election is easy in the case
of plurality voting, Borda count, and Condorcet voting
[4], but Bartholdi and Orlin [3] have shown that it is
NP-complete for a voter to find a preference order to
ensure the election of a particular candidate under STV.
However, if the number of candidates is small, the compu-
tational complexity may be tolerable. More recent work
by Conitzer et al. has studied strategic voting of many
systems from the perspective of computational complex-
ity [10].

Strategic voting arises because voters have an incentive
to cast ballots that do not reflect their true preferences.
However, from the auditor’s perspective, the voters’ true
preferences are irrelevant; a post-election audit is con-
cerned with making sure that the voters’ expressed pref-
erences are counted correctly. A common question with
both strategic voting and auditing is the following: Given
the ballots cast in an election, how large a subset must an
adversary control in order to force a particular outcome
of the election? From the perspective of strategic vot-
ing, this subset is a coalition of strategic voters. From
the perspective of auditing, the subset is the minimum
number of errors required to change the outcome of the
election.

3 Scored systems

Some methods proposed for auditing elections based on
plurality voting can be easily extended to single-winner
elections in which voters’s preferences can be interpreted
as scores given to each candidate. Efficient risk-limiting
audits can be achieved using the methods of Stark [35] or
Checkoway et al. [8]. We illustrate our ideas by slightly
generalizing the method of Stark below.

Let k denote the number of candidates in the election
and let [k] = {1,2,...,k} denote the set of candidates.
Let n be the total number of ballots cast in the election.
The true value of ballot i is x; = (xi(1),x;(2),...,xi(k)) €
[0,1]%, where x;(j) is the score that voter i gives to can-
didate j. Ballot i is recorded as y; € [0, 1]*. The true and
reported outcomes are

P=>x, Q=) v (1)
i=1 i=1
The reported winner and runner-up are

w, = argmax ;¢ {0(/) }, (2
Iy = argmaxje[k]{Q(j) LJ# Wr}a 3)

whereas the actual winner and runner-up are



w, = argmax ;{P(j)}, €))
la = argmax ;{P(j) : j # wa}, (5)

We will frequently write w for w, since the auditor only
knows w,. The reported and actual margins are

my = Q(Wr) - Q(ll‘)a mg = P(Wa) - P(la)- (6)

Note that these are measured in actual votes, not fractions
or percentages of the number of ballots cast.

A uniformly sampled, ballot-based audit consists of
drawing K ballots uniformly from the set of n ballots. Let
Z, = (X;,Y;) denote the ¢-th ballot in the sample (that is,
Z, is ballot (x;,y;) for some 7). The relative overstatement
between candidates w and j with respect to the reported
margin for the ¢-th ballot is

o (W) =Y()) — (X (w) — X, ()
almi) = o(w) - 0(J) -0

For elections where votes are in {0, 1}, this is 0 when
there is no error, positive (either 1/(Q(w) — Q(j)) or
2/(Q(w) — Q(j))) when there is an error that decreases
the margin, and negative (either —1/(Q(w) — Q(jj)) or
—2/(Q(w) — Q(j))) when there is an error that increases
the margin. The expected value of ¢, (w, j) is

(P(w) = P(j))

. (8

For the 7-th audited ballot, the worst case relative over-
statement is

6, — max 00 1) = (X (w) =X ()

ng 0(w) —0()) ®

This is conservative, as é; may be positive if the 7-th sam-
pled ballot shrinks the relative gap between the winner
and any other candidate j. The expectation of & is not
easy to calculate, but it is sufficient to upper bound it. The
numerator is at most 2 and the denominator is at least m,,
s0 & < 2/m,. The test procedure consists of sampling
ballots and computing the test statistic

1= (m,/n)/(2y)
T(K) = — (10)
(K) tI;[l 1—ém,/(2y)

The election can be certified with risk « if T(K) < a.
The parameter y > 1 effectively shrinks the margin m, (or

inflates the error) which helps make the test statistic more
robust.

The approach described above by Stark [35] was pro-
posed in the context of auditing plurality contests with
possibly more than one winner. It is easy to transform
approval, range voting, and Borda counts into this frame-
work, as we can show in the remainder of this section.

3.1 Approval voting

In approval voting, each voter can decide to approve or
disapprove of each candidate. Therefore the ballots are
x; € {0, 1}*. The auditing method was originally designed
to work for the setting where voters could approve of up
to ¢ candidates and there were ¢ winners, so this is a
simple extension for approving of up to k candidates with
1 winner.

3.2 Range voting

In range voting users can assign a score to each candidate.
These scores are typically integers, say from O to 10. The
winner is the candidate who garners the maximum sum
score from the voters. For a range voting system with
scores in the range 0 to S we can normalize by S so that
each ballot is represented by x; € {0,1/5,2/S,..., 1}k,
The auditing algorithm can then be run as before. Note
that for range voting the upper bound of 2/m, on &, may
be significantly more conservative than for approval vot-
ing, especially if many voters do not have polarized views
about all of the candidates. This decreases the efficiency
of the audit since it uses more ballots than necessary.

3.3 Borda count

Borda counts is thought of as a voting system where users
rank candidates. This is true in that users submit their
preferences in terms of a ranked list. However, the Borda
count converts this ranked list into a numerical score for
each candidate, and hence can be audited by the same
mechanism as other scored systems. On a ballot for an
election to be tabulated by a Borda count, voters rank
candidates in order of preference. In an election with
k candidates, the Borda count assigns k — s+ 1 points to
the s-th highest ranked candidate. Thus the top-ranked
candidate for the voter gets k points, the second-ranked
candidate gets k — 1 points, and so on. Voters need not
rank all candidates; an unranked candidate gets O points.
Again, by dividing the number of points by k, we can
represent the i-th ballot as x; € {0,1/k,2/k,..., 1}K.

4 Ranked systems

As discussed in Section 2, some alternative voting sys-
tems ask voters to explicitly rank candidates. We showed
earlier that the Borda count is best thought of as a scored
system, but Condorcet and IRV elections use the ranking
order in a fundamentally different way.



Consider an election with k candidates and n ballots
cast. For a set A C [k], let II(A) denote the set of all or-
dered subsets of [k]. That is, IT(A) contains all ranked
lists of elements of A. In a ranked-choice election with k
candidates, a ballot x; for voter i is an element of TI([k]).
The ballot x; is recorded as a ballot y;. The election sys-
tems we discuss in this section all operate on the counts
of the election. For an § € I1(A) define

NS = 1(yi=5). (1)
i=1

That is, N(S) is the number of ballots recorded as prefer-
ence ranking S.

Unlike in scored systems, we cannot create a common
framework for tabulating ranked systems, but the two
methods we discuss in this section, Condorcet and IRV,
perform simple arithmetic operations and comparisons
on the ballots in order to compute the outcome of the
election.

4.1 Condorcet methods
To tabulate a Condorcet election, the counts are converted
into pairwise preferences

C(i,j) = _N(S)-1(i precedes jin S). (12)
SET([K)

Thatis, C(i, j) is the number of ballots in which i is ranked
higher than j. If there exists a candidate i € [k] such that
C(i,j) > C(j,i) for all j # i, then candidate i is called
the Condorcet winner. The Condorcet graph has vertices
which are the candidates and the directed edge from i to j
with weight C(i, j).

If there is a Condorcet winner we can audit each edge
connecting the winner to the other candidates in the Con-
dorcet graph by considering a plurality election between
the two candidates. Certifying the Condorcet winner
will then certify the election. Because we are concerned
with the winner only, we need to simultaneously audit
k — 1 pairwise elections and do not need to consider the
(]2() — k+ 1 other pairwise elections. Under this auditing
procedure, the reported margin of an election with Con-
dorcet winner w, is

my = min{C(w,, j) — C(j,w:) }. (13)

]#Wr

One way to audit these is to use Stark’s method of au-
diting a collection of races simultaneously [35] using a
diluted margin of & = m, /n.

If there is no Condorcet winner, then there is a ma-
jority rule cycle and we need to consider the particular
Condorcet completion method used. There is a veritable

menagerie of Condorcet completion methods proposed in
the literature. To illustrate how auditing applies, we re-
strict our discussion to a few examples for which auditing
is simple to describe.

Two-method systems. A two-method system elects the
Condorcet winner, if one exists. If there is no Condorcet
winner, than a completely different method of tabulating
the ballots is used. One possible completion method to
use when there is no Condorcet winner, first described by
Black [5], uses Borda count to decide the winner. Fish-
burn improves on this by restricting the Borda counts to
the Smith set— the smallest set of candidates such that
each beats all candidates outside the set [12, Function C].

Auditing a two-method system involves auditing each
method. If the reported counts indicate a Condorcet win-
ner we can audit at risk level o using the methods de-
scribed above. If the reported counts indicate that there
is no Condorcet winner we first audit ballots to assure
that no Condorcet winner exists at risk level r by simul-
taneously auditing the pairwise elections that form the
majority rule cycle. We can then audit the completion
method (e.g., Borda count) at risk level r,. We pick rq
and r; such that

I—-(1=r)(1=n)<a. (14)

One-method systems. A one-method system is a single
procedure that elects the Condorcet winner when one ex-
ists, and selects a different candidate otherwise. For the
same set of cast ballots, different one-method systems
may elect different candidates. If there is a reported Con-
dorcet winner, the election can be audited using either the
general method above or by auditing the specific method
used. If there is no reported Condorcet winner, then a
secondary audit must be used for the specific method.

The Nanson method [21] and the related Baldwin
method [2] work in rounds with one or more candidates
eliminated each round, similar to instant-runoff voting, ex-
cept that Borda counts determine who is eliminated. The
auditing procedure is very similar to IRV (Section 4.2).
The Schulze method — the most commonly used Con-
dorcet method — is more complicated. Developing a risk
limiting audit for the Schulze method is an open prob-
lem. However, most organizations which use the Schulze
method do not use physical ballots or a voter-verifiable pa-
per audit trail (VVPAT), so the auditing framework used
here may not be appropriate.

4.2 Instant-runoff voting

In an IRV election, voters also express their preferences as
a ordered subset of the candidates. The counting proceeds
in rounds. In each round, the candidates with the fewest



top-choice votes are eliminated. Eliminating a candidate
effectively removes the candidate from all ballots in which
she was ranked, causing later ranked candidates to move
up one spot. A candidate who is not eliminated is called
a continuing candidate. A ballot is considered exhausted
when all of the candidates it ranks have been eliminated.
The elimination stops when one candidate has a majority
of top-choice votes on the nonexhausted ballots.

There are several methods for choosing the candidates
to eliminate. The simplest is to eliminate the candidate
with the fewest top-choice votes. This is the base IRV
elimination rule. In San Francisco municipal, ranked
choice voting (RCV) elections, multiple candidates can
be eliminated in a single round.® We refer to this as the
SF RCYV elimination rule. In both cases, the sum of the
top-choice votes for candidates chosen to be eliminated
is less than the number of top-choice votes for every can-
didate who is not eliminated (except in the case of a tie).
That is, if E is an elimination set, then

n

D 1(yi(1) €E) <min) 1(yi(1) =c)
i=1

(15)
S

where y;(1) is the top, noneliminated choice on ballot i.
Other elimination rules — for example, eliminating all
candidates who do not receive a threshold fraction of the
top-choice votes each round — exist but will not be dis-
cussed. These two counting method are standard, but are
provided for completeness in Algorithm 4 of Appendix A.

Tabulating the outcome of an IRV election produces a
list € = (E1, Ea,. .., ER) of sets of eliminated candidates
in the order in which they were eliminated. The set E, is
the set of candidates eliminated in the r-th round. Under
the base IRV rules, E, is always a single candidate for
r < R, whereas in the SF RCV rule E, may contain many
candidates. In either case, once one candidate has a ma-
jority, the final elimination set Egx may contain multiple
candidates.

There are at least three approaches to designing risk-
limiting audits for IRV elections.

Auditing the taint. Given the margin of the IRV elec-
tion, we can try to evaluate how much each erroneous bal-
lot contributes to the margin — the so-called taint [33] —
much as Stark’s method does for plurality audits. Suppose
we sample a ballot X; whose cast vote record is Y; # X;,

6S.F., CAL., CHARTER art. XIIL, § 13.102(e) (Mar. 2002), “If the
total number of votes of the two or more candidates credited with the
lowest number of votes is less than the number of votes credited to the
candidate with the next highest number of votes, those candidates with
the lowest number of votes shall be eliminated simultaneously and their
votes transferred to the next-ranked continuing candidate on each ballot
in a single counting operation.”

for example, the ballot may have been misinterpreted by
the voting system or an adversary may have caused the
cast vote record to be changed or recorded incorrectly. If
replacing Y; by X; does not change the (plurality) mar-
gin in any elimination decision of the IRV tabulation
process, we can declare the ballot nonmaterial. If any
margin changes, then we declare the ballot error material,
however, it is not clear how much the ballot changes the
margin without recomputing the exact margin with the
corrected ballot— a potentially lengthy computation. In-
deed, it may be that the effect of a collection of errors
on the margin may not be the sum of the effects of each
error. Determining how to efficiently compute the size of
the change is an open problem, the solution to which may
provide drastically more efficient auditing methods than
the two approaches below.

Auditing the elimination order. A second approach is
to audit the elimination order £ to verify that the set of
candidates eliminated in each round is correct. If any
elimination selection is a result of a tie breaker — for
example, with the base IRV elimination rule, if the two
candidates with the fewest number of top-choice votes in
around have the same number of votes, then the candidate
to be eliminated may be chosen by some other mecha-
nism such as a coin flip— then a complete hand count is
necessary.

Otherwise, each round of the algorithm leads to a plu-
rality election to be audited. For each round r: (1) elimi-
nate and distribute the votes for candidates eliminated in
previous rounds, namely £y UE>, U---UE,_1; (2) aggre-
gate the candidates who are to be eliminated in round r,
namely those in E,, into a “super candidate”; and (3) au-
dita (k' — 1)-winner plurality election with k" candidates
consisting of the super candidate and the ¥’ — 1 continu-
ing candidates. The audit in step (3) is to ensure that the
super candidate lost. This procedure results in R plurality
elections to audit.

The R plurality elections can be audited simultaneously
using Stark’s method [35]. Each ballot can cause 0, 1,
or 2 errors for each of the R-plurality elections; however,
due to the nature of the diluted margin in Stark’s method,
we take the maximum of the errors caused in any race as
the error contributed by the ballot.

In theory, this auditing method solves the problem of
performing a risk-limiting audit for IRV elections, but
in practice it may require counting too many ballots us-
ing the base IRV rules. This is because candidates who
are eliminated early often constitute a very small frac-
tion of the total ballots. For example, in the 2010 Oak-
land Mayoral election, three candidates each received
less than 1% of the votes. This led to a small margin
of 83 votes in round 3 out of a total of 122,264 ballots
cast in the election. Small pairwise margins for candi-



dates eliminated early-on in the counting requires large
sample sizes to detect an error in the elimination order.
If instead of the base elimination rule, the SF RCV rule
is used, then 8 of 11 candidates are eliminated in the
first round and the smallest margin used for the audit
is 1,627. We will return to this example several times in
Section 5.2.

Auditing by error detection. A third approach to build-
ing a risk-limiting audit is to attempt error detection. That
is, the auditor can sample K of ballots and compare each
paper ballot to its cast vote record (CVR). If the number
of ballots with any error exceeds a specified threshold,
then a manual count of the entire election is required.
Suppose that the margin is m. The effect of auditing for
material errors is to audit a fictitious plurality contest be-
tween two candidates whose margin is m. Each material
error that is found reduces the margin by two. Therefore
any method for auditing plurality contests may be adapted
for the purposes of error detection. Such an audit can be
performed using any of the standard methods [19, 22, 28].
If fewer erroneous CVRs are found than the threshold,
the auditor certifies the winner of the election. We choose
the threshold so that the sample-size is risk-limiting.

This last approach to risk-limiting audits requires com-
puting the margin of an IRV election, which is a topic of
recent interest [7, 20]. Once the margin or a lower bound
on it is known, then we can set the threshold to guaran-
tee a risk-limiting audit. Recent work by Magrino et al.
calculates the IRV margin exactly for some elections [20].
However, this exact calculation can be computationally
very expensive, even with clever heuristics.

S The margin of an IRV election

In this section we investigate the problem of computing
the margin for an IRV election. We first describe some
real IRV elections and their features. We then show a
lower bound on the margin based on picking elimination
sets in each round in such a way as to maximize the differ-
ence in votes between the “super candidate” described in
Section 4.2 and the continuing candidate with the fewest
votes. In order to evaluate how good this lower bound
is, we develop an algorithm that constructs a set of ballot
errors that can alter the winner of an IRV election. This
gives an upper bound which is often close to the lower
bound in real elections. Our bounds are fast to compute,
and when possible we compare our bounds to the exact
margins reported by Magrino et al. [20].

Appendix B contains several toy examples showing
unintuitive aspects of IRV elections, namely that just a
few errors recording ballots for losing candidates can
dramatically change the outcome of the election and that
even when IRV elects the Condorcet winner, the IRV
margin can be significantly smaller.

5.1 Margins for real elections

We purchased CVR data for six different elections that
were conducted using ranked-choice ballots from Open-
STV’. The three 2002 Diil Eireann elections — Dublin
North, Dublin West, and Meath — are multiple winner
STV elections which we include to stress our algorithms,
not because they are representative of IRV elections. The
others are IRV elections. CVR data for an additional 26
San Francisco Bay Area and Pierce County RCV elections
were also collected from the corresponding municipalities’
websites. A summary of the data is given in Table 1.

The three D4il Eireann, two Burlington mayoral, and
Takoma Park City Council special elections allowed vot-
ers to provide a complete ranking of all of the candidates
on the ballot. The last three additionally allowed write-in
candidates although in the case of the two Burlington
mayoral elections, the write-in took the place of one of
the candidates in the ranking. All of the California and
Washington elections used ballots where voters pick their
top three candidates, including write-ins.

One common feature of all of these elections is that
they involve a relatively small number of ballots compared
to state and national elections. As an extreme example,
only 204 people voted in the election for the Takoma Park
City Council. In such cases a full hand count is easy, and
would certainly be risk limiting. Indeed, in Australia, IRV
elections are counted by hand twice under the supervision
of scrutineers [9]. After tabulating the results from these
elections we were surprised to note that they share a more
interesting common feature: The winner according to the
IRV count was also a Condorcet winner for the election
in every case except for the 2009 Burlington mayoral
election. In Appendix B.2 we show that the IRV margin
may be smaller than the Condorcet margin, even when
both methods elect the same candidate.

Computing the IRV margins exactly can be a computa-
tionally difficult task for real elections that contain large
numbers of candidates or allow voters to rank many can-
didate on the ballot [20]. Therefore, in the rest of this
section we present lower and upper bounds on the mar-
gin and examine the bounds for the 32 elections. Where
known (from [20]), we compare the bounds with the exact
margin.

5.2 Lower bounds on the margin

One obvious lower bound on the margin in an IRV elec-
tion is the difference in votes between the two candidates
with the fewest top-choice votes in each round. Certainly
if the number of ballots which are modified is not enough
change any elimination decision, then the outcome must
be correct. However, it is trivial to show that this lower
bound is arbitrarily bad by considering an election in

7http://www.openstv.org


http://www.openstv.org

Table 1: Election data.

Election Candidates Ranks  Ballots Condorcet winner
2002 Diil Eireann, Dublin North' 12 12 43,942 v
2002 D4il Eireann, Dublin West! 9 9 29,988 v
2002 Dail Eireann, Meathf 14 14 64,081 vV
2006 Burlington Mayor 6t 5 9,865 v
2007 San Francisco Mayor 18 3 149,465 v
2007 Takoma Park City Council special, Ward 5 44 4 204 v
2008 Pierce County Assessor 7+ 3 312,771 v
2008 Pierce County City Council, Dist. 2 4t 3 43,661 v
2008 Pierce County Executive 5t 3 312,771 v
2009 Burlington Mayor 6t 5 8,984

2009 Pierce County Auditor 4% 3 159,987 v
2010 Berkeley Auditor 2t 3 45,986 v
2010 Berkeley City Council, Dist. 1 5t 3 6,426 v
2010 Berkeley City Council, Dist. 4 5t 3 5,708 v
2010 Berkeley City Council, Dist. 7 4% 3 4,862 v
2010 Berkeley City Council, Dist. 8 41 3 5,333 v
2010 Oakland Mayor 11# 3 122,268 v
2010 Oakland Auditor 3t 3 122,268 v
2010 Oakland City Council, Dist. 2 31 3 15,243 v
2010 Oakland City Council, Dist. 4 gt 3 23,884 v
2010 Oakland City Council, Dist. 6 4t 3 14,040 v
2010 Oakland School Board Director, Dist. 2 2% 3 15,243 v
2010 Oakland School Board Director, Dist. 4 3t 3 23,884 v
2010 Oakland School Board Director, Dist. 6 21 3 14,040 v
2010 San Francisco Board of Supervisors, Dist. 2 7+ 3 28,911 v
2010 San Francisco Board of Supervisors, Dist. 6 15% 3 25,057 v
2010 San Francisco Board of Supervisors, Dist. 8 5t 3 38,551 v
2010 San Francisco Board of Supervisors, Dist. 10 221 3 20,550 v
2010 San Leandro Mayor 74 3 23,494 v
2010 San Leandro City Council, Dist. 1 4% 3 23,494 v
2010 San Leandro City Council, Dist. 3 2% 3 23,494 v
2010 San Leandro City Council, Dist. 5 3t 3 23,494 v

 These are multiseat STV elections that have been treated as IRV.

¥ Includes a single combined write-in candidate.

The Ranks column denotes how many candidates a voter was allowed to rank on the ballot.
There is a v in the Condorcet winner column if the IRV procedure elects the Condorcet winner.



Table 2: Margin bounds from real elections using ranked-choice ballots.

Election

Lower bound

margin %

Exact

margin %

Upper bound

margin %

Condorcet

margin %

2002 Déil Eireann, Dublin North

2002 Déil Eireann, Dublin West

2002 Déil Eireann, Meath

2006 Burlington Mayor

2007 San Francisco Mayor

2007 Takoma Park City Council special, Ward 5
2008 Pierce County Assessor

2008 Pierce County City Council, Dist. 2

2008 Pierce County Executive

2009 Burlington Mayor

2009 Pierce County Auditor

2010 Berkeley Auditor

2010 Berkeley City Council, Dist. 1

2010 Berkeley City Council, Dist. 4

2010 Berkeley City Council, Dist. 7

2010 Berkeley City Council, Dist. 8

2010 Oakland Mayor

2010 Oakland Auditor

2010 Oakland City Council, Dist. 2

2010 Oakland City Council, Dist. 4

2010 Oakland City Council, Dist. 6

2010 Oakland School Board Director, Dist. 2
2010 Oakland School Board Director, Dist. 4
2010 Oakland School Board Director, Dist. 6
2010 San Francisco Board of Supervisors, Dist. 2
2010 San Francisco Board of Supervisors, Dist. 6
2010 San Francisco Board of Supervisors, Dist. 8
2010 San Francisco Board of Supervisors, Dist. 10
2010 San Leandro Mayor

2010 San Leandro City Council, Dist. 1

2010 San Leandro City Council, Dist. 3

2010 San Leandro City Council, Dist. 5

203 0.5

8 0.0

129 0.2
482 4.9
68,060 45.5
36 17.6
276 0.1
4,014 9.2
4,054 1.3
253 2.8
16,792 10.5
30,711 66.8
1,770 27.5
777 13.6
728 15.0
1,011 19.0
2,025 1.7
33,045 27.0
4,349 28.5
131 0.5
3,653 26.0
9,660 63.4
7,089 29.7
9,651 68.7
258 0.9

1 00
3,552 9.2
2 00

232 1.0
6,262 26.7
16,675 71.0
1,484 6.3

10.5
30,712 66.8
36.5
18.1
15.0
1,756 32.9
1.7
34,162 27.9
4,350 28.5
19.5
5,206 37.1
9,660 63.4
7,240 30.3
9,652 68.7

232 1.0
6,262 26.7
16,676 71.0
1,484 6.3

2,724
1,444
6,198 9.7
778 7.9
101,676 68.0
38 18.6
2,222 0.7
4,016 9.2
4,056 1.3
254 2.8
16,794 10.5
30,712 66.8
2,350 36.6
1,034 18.1
730 15.0
1,758 33.0
2,026 1.7
34,164 27.9
4,350 28.5
4,658 19.5
5,206 37.1
9,662 63.4
7,240 30.3
9,652 68.7
260 0.9
1,338 5.3
3,554 9.2
306 1.5
234 1.0
6,264 26.7
16,676 71.0
1,486 6.3

6.2
4.8

2,723
1,443
6,197 9.7
776 1.9
101,674 68.0
36 17.6
2,221 0.7
4,014 9.2
4,054 1.3
588 6.5
16,792 10.5
30,711 66.8
2,348 36.5
1,033 18.1
728 15.0
1,756 32.9
2,025 1.7
34,162 27.9
4,349 28.5
4,657 19.5
5,205 37.1
9,660 63.4
7,239 30.3
9,651 68.7
258 0.9
1,337 53
3,552 9.2
286 14
232 1.0
6,262 26.7
16,675 71.0
1,484 6.3

6.2
4.8

The exact margins are taken from Magrino et al. [20].
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Algorithm 1: Lower bound on IRV margin

inputs: candidates A, ballots B
outputs: lower bound on margin /b

Enqueue (s, (A,B))
while true do
p, (A,B) < Dequeue ()
if |A| = 1 then
b+ p

return
ESets <+ ValidEliminationSets (B)

foreach E € ESets do
A+ A\E

P min{p, g&gél(yi(l) = c) —él(yi(l) € E)}

B' < EliminateCandidates (B, E)
Enqueue (p/, (A',B)))

which there are two candidates who each receive exactly
one vote.

The example of the 2010 Oakland Mayoral race men-
tioned in Section 4.2 shows that different choices of elimi-
nation sets can lead to different margins in the constructed
plurality elections used for the audit. Instead of auditing
the elimination order by considering the actual elimina-
tion sets dictated by the election rules as described in
Section 4.2, one can choose different, valid elimination
sets for each round in such a way as to maximize the
margin of the constructed plurality elections. This also
provides a lower bound on the IRV margin that can be
used to audit the taint or by error detection. Considering
the 2010 Oakland Mayoral election again, if the 7 lowest
candidates are eliminated in the first round instead of the
8 chosen by the SF RCV rule, then the smallest margin
used in the audit rises to 2025.

The idea to pick the best elimination sets to use comes
directly from David Cary’s IRV lower bound computation
in simultaneous, independent work [7]. For concreteness,
we describe the lower bound algorithm and its correct-
ness below but refer the interested reader to Cary’s work
for a more complete treatment as well as an alternative
implementation.

The obvious lower bound is twice the number of ballots
necessary to change the order that candidates are elimi-
nated. However, by definition of the elimination set, in
any round, any valid choice of elimination set can be cho-
sen and those candidates eliminated without changing the
ultimate winner of the election (this is the basis of the
SF RCV elimination rule). This is a relaxation on the or-
der in which candidates must be eliminated to ensure the
correct outcome. Consider the Oakland Mayoral election
one final time. Since the 8 candidates with the fewest top-
choice votes in the first round can be eliminated without
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changing the winner, it is immaterial in which order those
candidates are eliminated so long as they are eliminated
before any others.

Any sequence of valid elimination sets thus gives
a lower bound on the margin as follows. If & =
(E\,Ea,...,ER) is a valid sequence of elimination sets,
then

n n

l(y,-(l):c)—ZI(yi(l)EE) (16)

i=1

Ibge = minmin
E€E c¢E £ N
=

is a lower bound (cf. (15)). If each E, € £ consists of a

single candidate, then /b¢ is the obvious lower bound.
Since each valid Ib¢ is a lower bound, we can take the

maximum over all valid £ to arrive at the bound

Ib = max Ibg.
valid €

a7

The bound /b can be efficiently computed by using a
priority queue. The queue initially contains the set of bal-
lots with an infinite priority. The main loop removes the
set of ballots with the highest priority p. If all but one can-
didates have been eliminated, then the priority is returned
as the lower bound. Otherwise, all valid elimination sets
are computed. For each valid elimination set, a copy of
the ballots is constructed, the candidates in the set are
eliminated, and the new ballots are placed into the queue
with priority p’ where p’ is the minimum of p and the
difference in votes between the sum of top-choice votes
for candidates in the elimination set and the top-choice
votes for the continuing candidate with the fewest votes.
This procedure is given in Algorithm 1. Since we are
using a priority queue, once we reach a set of ballots for
which all candidates but one have been eliminated, every



other sequence of elimination sets leads to a lower bound
that is no better.

Note that the sequence of elimination sets used to con-
struct the lower bound in Algorithm 1 is the optimal set to
use when performing an audit of an IRV election by con-
sidering plurality elections for each round as described in
Section 4.2. It is trivial to modify Algorithm 1 to return
the sequence of eliminations used.

The weakness in the lower bound is that it considers the
slimmest margin in any elimination decision. However,
the margin between two candidates in a given round can
be quite low but the candidates together have too many
votes to be grouped into an elimination set. For example,
in the 2010 Oakland City Council, District4 election, in
round 5 — using the base IRV elimination rule — Melanie
Helby had 3,017 top-choice votes and Daniel Afford had
2,886. Neither can be eliminated in an earlier round using
a larger elimination set and they cannot be eliminated
together leading to a lower bound of 133 which is about
0.5% of the total number of ballots cast in the election.
By contrast, the exact margin is 5,658 or about 19.5% of
the ballots cast [20].

5.3 Algorithmic upper bound on the margin

In this section we develop an algorithm that takes a set of
CVRs and constructs a set of ballot errors that changes
the winner of the IRV election. This gives an upper bound
on the margin of the election. This upper bound, which
is efficiently computable, is useful to bound how far the
lower bound described in the previous section is from the
exact value if the exact value is not known. As we will
show shortly, in many real elections the bound computed
by this algorithm agrees with the exact margin.

Our method, Algorithm 2, is based on calculating an
upper bound on the margin for each possible alternative
winner of the election. For a given alternative winner j,
we calculate a sufficient number of errors required to
make j the winner of the election. Because our algorithm
is “greedy” in a sense, the total number of errors we
calculate may be quite a bit larger than the minimum
number of material errors needed to change the outcome.

The algorithm proceeds as follows: For an alternative j,
we tabulate the IRV election round by round until j ap-
pears in the elimination set E. Let k be the continuing
candidate with the fewest top-choice votes; let s be the
number of top-choice votes for candidates in E; and let
m be the difference between the number of top-choice
votes for k and s. The goal is to change enough votes
from continuing candidates to j to remove j from the
elimination set. There are two cases. If E is the singleton
containing j— so that s = m — then shifting |m/2] + 1
votes from k to j will give j enough votes to not be elimi-
nated in this round. Otherwise, there are multiple candi-
dates in E and shifting | (s—1)/2| + 1 votes from & to j
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is enough to remove j from the elimination set due to
the strict inequality in (15). Finally, we tabulate the IRV
election with the modified votes and repeat the margin
modification process until a different candidate is elected.
Note that it need not be j who is elected, since it is suf-
ficient that any candidate other than the reported winner
win.

The greedy part of the algorithm comes from how we
choose the ballots for k that are switched to ballots for j.
The selection heuristic is given in Algorithm 3. The
method changes ballots of the form (k, .. .) to ballots with
first-choice equal to j. We can write the elimination or-
der & = (Ey,Ey,...,Eg). The intuition is that for j to
win, she must defeat the candidates in each of the sets
E\\{j},E2,E3,...,Eg and finally w,. So the heuristic is
to preferentially change ballots closest to the elimination
order of the election. This corresponds to lexicographi-
cally ordering the cast vote records as a function of £ (see
the definition of ¢ in Algorithm 3).

There are other heuristics possible for selecting which
ballots to shift. For example, since j must eventually
defeat w,, it may be better to change preferentially ballots
of the form (k,w,,...), thereby greedily reducing the mar-
gin between j and w,. Another set of heuristics can be
derived by looking at the Condorcet graph of the ballots
in round r and greedily ordering the ballots to be changed
by the Condorcet margin. Since any heuristic generating
a set of errors that alter the outcome of the election is
a valid upper bound on the margin, we could take the
minimum of margins generated by Algorithm 2 with each
ballot ordering.

5.4 Margin calculations for real elections

Table 2 shows the results of margin calculations for the
32 elections in Table 1. We show four margin calcula-
tions: the lower bound of Section 5.2, exact margins from
Magrino et al. [20] (when possible), the upper bound of
5.3, and the margin corresponding to treating the election
as a Condorcet election.

In some elections, the lower bound produces a margin
which is less than 0.5%, which is the threshold for a
recount® in many jurisdictions. Because the three 2002
Diil Eireann elections were for multiple-winner STV
elections, the small values for the lower bound may not
be representative. However, for two of the San Francisco
Board of Supervisors elections, the lower bound produced
a margin that is essentially zero whereas the upper bound
is a significant fraction of the number of ballots cast.

For those elections where the exact margin was calcu-
lated by [20], our upper bound is either exactly the same
or within two ballots of the exact margin. The difference
in two ballots is because we take the margin to be twice

8Cf., ALA. CODE §17-16-20 (2010) or FLA. STAT. §102.141 (2010).



Algorithm 2: Greedy upper bound on IRV margin

inputs: candidates A, ballots B = {y; € IT(A)}"_,
outputs: upper bound on margin i

Winner, ElimOrder,_ < IRV (A, |A

foreach j € A\ {Winner} do

, B)

(Winner’,A’, B',ElimOrder’) + (Winner,A, B, EimOrder)

€j =0
while Winner’ = Winner do
I + index of E in ElimOrder’ such that j € E

_,_, B+ IRV (A, 1—1, B') (eliminate candidates who would be eliminated before j)

foreach E € ElimOrder’(1:7—1) do
A’ « A'\ E (remove eliminated candidates )

k < the candidate in A"\ ElimOrder’ (/) with the fewest top-choice votes

§ 4= D_ccElimorder (1) (tOP-choice votes for c)

m < (top-choice votes for k) — s
if |[ElimOrder’ (/)| > 1 then

m <+ m— 1 (modifying the margin by exactly m is enough to change the elimination set )
B' e + ModifyMargin (B, m, j, k, EimOrder’ (I : end), Winner)

ej<ejte
Winner', ElimOrder’,_ < IRV (A/,
M < 2min;{e;}

A'|, B')

Algorithm 3: ModifyMargin — choosing errors to decrease the margin

inputs: ballots B = {y; € II(A) }"

=1’

margin m, recipient j, victim k, ElimOrder, Winner

outputs: modified {y;} such that the margin between j and k has decreased by more than m, number of ballots

changed ¢

¢+ |m/2]+1

o <« (ElimOrder(2 : end) || Winner || ElimOrder(1)\ {j} || j) { o is an ordered list )

o « (k) || o\ {k} (Move k to beginning of & )

Sort {y;} lexicographically according to o, where longer matches appear before shorter matches; e.g.,

(06(1),0(2),0(3)) precedes (o(1),0(2))

Change the first ¢ of the sorted y; into votes with j as the only choice

the number of ballot errors necessary for a different can-
didate to win, whereas [20] considers the number needed
to tie. The tightness of our upper bound suggests that the
heuristic that we used is an good one. However, for all
of these elections the exact margin and upper bound are
almost identical to the Condorcet margin. Thus in most
real IRV elections, we suspect that the reported winner is
likely to be the Condorcet winner and the margin is the
Condorcet margin.

Many of the elections studied have margins which are
quite large. This suggests that these elections should be ef-
ficiently auditable. However, these are not, in many cases,
hotly contested elections. The 2010 Oakland School
Board Director for District 6 was the only candidate on
the ballot. It is unclear if such large margins would re-
main in larger, more contested elections such as state
elections.
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6 Conclusions
Alternatives to plurality voting like instant-runoff vot-
ing, if deployed, should be accompanied by risk-limiting
audits. In this paper, we have initiated the study of
risk-limiting audit procedures for these alternative single-
winner election systems

We classify the alternative voting systems we study into
two groups: scored and ranked systems. Scored voting
systems can be audited using the analysis and algorithms
from plurality election auditing. However, some ranked
systems require a different approach. Condorcet elections
where there is a Condorcet winner can be converted into
a multiple-context plurality election. For instant-runoff
voting, the question appears to be more complicated.

We propose three methods for auditing IRV elections.
Auditing the taint requires an efficient method of calculat-
ing the margin (or a lower bound) and a way to compute



how much an error in recording a ballot affects the mar-
gin — the ballot’s taint— an open problem. Auditing the
elimination order constructs a set of multi-winner plural-
ity elections based on an optimal choice of elimination
sets used to eliminate candidates in each round and audits
each of those. Auditing by error detection is similar to
auditing the taint except that all errors are assumed to be
as bad as possible and modify the margin by 2.

Except for auditing by error detection — which is es-
sentially the original ballot-based method for auditing
plurality election — knowledge of the margin for an IRV
election is not sufficient for auditing.

An important question is whether the effects seen in
the relatively small elections for which we have data will
be present in larger state or national elections. Obtaining
data from such elections (or polling data) could be quite
valuable. As with plurality elections, there is a dearth of
information on the nature and distribution of real ballot
errors. Such data could be used to optimize the statistical
efficiency of an auditing procedure.

We do not believe that our proposed auditing proce-
dures are the last word on risk-limiting audits of alter-
native election systems; we hope that future work will
provide simpler and more efficient audits. As things
stand now, however, some voting systems (e.g., Borda
counts) appear to be substantially easier to audit than oth-
ers (e.g., IRV). We believe that ease of auditing should
be a criterion when voting systems are considered for
adoption.
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A IRV tabulation algorithm

One way to perform IRV tabulation is described in Algo-
rithm 4. Tt takes as input the set of candidates A, the max-
imum number of rounds of the algorithm to perform p,
and the set of ballots {y; € IT(A)}?_,. It iteratively elim-
inates the candidates with the fewest top choice votes —
yi(1) is the top, noneliminated choice on ballot i, and then
removes the candidates from every ballot on which they
appear. As output, it produces the winner, if any after
p rounds, the set of candidates eliminated in each round,
and the modified set of ballots after candidates have been
eliminated.

As discussed in Section 4.2, there several rules for
choosing which candidates to eliminate in each round.
By abstracting the choice of the elimination set, all va-
rieties of IRV can be described at once. The function
EliminationSet (B) in Algorithm 4 takes a set of
ballots B and returns the set of candidates to be elimi-
nated next. For example, using the base IRV elimination
rule, EliminationSet (B) returns the candidate with
the fewest top-choice votes. The SF RCV elimination
rule returns largest set of candidates E such that the sum
of the top-choice votes for all candidates in E is less than
the number of top-choice votes for all of the candidates
not in E, S.F., CAL., CHARTER art. XIII, § 13.102(e)
(2002).

Rather than iterating over each ballot every time, one
can pick smarter representations such as keeping track of
how many ballots with each particular candidate ranking
exist or using tree data structure in which paths from the
root to a node correspond to candidate rankings [23]. Us-
ing a tree, eliminating a candidate involves recursively
removing nodes corresponding to that candidate and merg-
ing their children.


www.verifiedvoting.org/downloads/20031217.neff.electionconfidence.pdf
www.verifiedvoting.org/downloads/20031217.neff.electionconfidence.pdf
www.verifiedvoting.org/downloads/20031217.neff.electionconfidence.pdf
http://csrc.nist.gov/publications/nistpubs/NBS_SP_500-30.pdf
http://csrc.nist.gov/publications/nistpubs/NBS_SP_500-30.pdf
http://www.sfgov2.org/Modules/ShowDocument.aspx?documentid=155
http://www.sfgov2.org/Modules/ShowDocument.aspx?documentid=155
http://lists.electorama.com/pipermail/election-methods-electorama.com/1997-October/001570.html
http://lists.electorama.com/pipermail/election-methods-electorama.com/1997-October/001570.html
http://lists.electorama.com/pipermail/election-methods-electorama.com/1997-October/001570.html
http://lists.electorama.com/pipermail/election-methods-electorama.com/1997-October/001570.html

Algorithm 4: TRV — tabulating IRV results

inputs: candidates A, rounds p, ballots {y; € IT1(A)}",
outputs: Winner, ElimOrder, modified {y;}

Winner < 0
ElimOrder < ()
r«<0
while r < p do
r<r+1
foreach c € A do
O(e) < 2oy 1(yi(1) = C)
if max.{Q(c)} > 1>, Q( ) the
Winner + argmax.{Q(c )}
Append A\ {Winner} to ElimOrder

break
else

E+ EliminationSet ({y;})
Append E to ElimOrder
A+ A\E
foreach y; do
yi < Yi\E

B Examples for IRV margins

In this appendix we give some toy examples of IRV elec-
tions that illustrate two points. First, a small number of
errors can dramatically change the outcome of an IRV
election. Secondly, the IRV margin can be smaller than
the Condorcet margin, even when IRV elects the Con-
dorcet winner.

B.1 IRV can be sensitive to small errors

IRV is sensitive to errors, in the following sense: Switch-
ing even a single vote from one losing candidate to an-
other (or fabricating a vote for a losing candidate) may
be enough to change the winner of an election.” We
illustrate this via a simple example. Consider the six can-
didate, 1000 ballot election in Table 3. Zo€ has the fewest
votes of any candidate. She is eliminated in the first round
and ultimately Velma wins with 496 votes. Ulric comes
in second with 379 votes. Naively, one might say that
Velma won with a margin greater than 10% (either 11.7%
or about 13.4% depending on whether the denominator is
1000 or 379 + 496 = 876).

If an adversary is able to arrange for a single Y X V
ballot to be counted as a Z Y ballot, then we get the
election in Table 4. Here, the small error cascades through
the rest of the rounds and Ulric, who previously came
in second, is the winner with 379 votes. The correct

L D. Hill describes a slightly different example of instability in
a real Single Transferable Vote election — the multiseat analogue of
instant-runoff voting. Hill points out that a change in a single ballot’s
15th choice (out of 23) would result in a different winner. In this case, it
was the difference between voting for one of the (eventual) winners and
the closest runner up rather than between two losers [18].
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winner, Velma, does not even make it to the final round.
Instead, Xavier, who was previously eliminated in the
second round makes it all the way to the final round to
lose with 295 votes. Again, naively, the margin appears to
be quite large (either 8.4% or about 12.5%). This example
shows that intuition about margin calculations in plurality
elections may not be applicable to IRV elections.

B.2 Margins for Condorcet versus IRV

The margin for IRV may be smaller than the Condorcet
margin. Consider an election between Xavier, Yolanda,
and Zoé&. Only 36 ballots were cast in this election, and
the results are summarized in Table 5.

Under IRV, in the first round Xavier gets 11 votes,
Yolanda 15 votes, and Zoé 10 votes, so Zoé is eliminated.
However, the supporters of Zo€ break unanimously for
Xavier over Yolanda, so in the final round Xavier defeats
Yolanda 21 votes to 15 and Xavier is the IRV winner. The
simple lower bound for the margin of this election is one
vote, the gap between Xavier and Zog in the first round.
Note that Xavier is also the Condorcet winner of this
election — voters prefer Xavier to both Yolanda and Zoé
by 21 to 15. The Condorcet margin is therefore six votes.
Further, voters also prefer Yolanda to Zog 21 to 15 so the
minimum difference in preference between candidates is
also six. However, the IRV margin really is two votes
since one ballot shifted from Xavier to Zoé will cause
Xavier to be eliminated in the first round and Yolanda to
win.



Table 3: Unmodified six candidate, 1000 ballot IRV election.

Candidate Round 1 Round 2 Round 3 Round 4 Final
Ulric 199: U 199: U 199: U 199: U 199: U
180: WU 180: WU
Velma 200: V 200: V 200: V 200: V 200: V
170: X V 170: X V 170: X V
126: X X V
Wilard 180: WU 180: WU 180: WU — —
Xavier 170: X V 170: X V — — —
Yolanda 1266Y XV 1266YXV 1266YXV 1266Y XV —
125:7 Y 125: 7Y 125:7 Y
Z0oé 125: 72 Y — — — —

Table 4: IRV election in Table 3 with a single Y X V ballot changedtoZ Y.

Candidate Round 1 Round 2 Round 3 Round 4 Final
Ulric 199: U 199: U 199: U 199: U 199: U
180: WU 180: WU
Velma 200: V 200: V 200: V 200: V —
Wilard 180: WU 180: WU 180: WU — —
Xavier 170: X V 170: X V 170: X V 170: X V 170: X ¥
125: X XV 125: XXV 125: ¥ XV 125: ¥ X ¥
Yolanda 125: Y XV — — — —
Z0oé 126: 2 Y 126:Z Y — — —

Table 5: IRV election where the IRV margin is smaller than the Condorcet margin.

Candidate  Round 1 Final
Xavier 6:XYZ 6XY/Z
5:XZY 5XZY
10:Z XY
Yolanda 100YXZ 10:0YXZ
55YZX 5YZX
Z0oé 10:Z XY —
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