
Where did I leave my keys?

Lessons from the Juniper Dual EC Incident

Stephen Checkoway
University of Illinois at Chicago

Jacob Maskiewicz
University of California, San

Diego

Christina Garman
Johns Hopkins University

Joshua Fried
University of Pennsylvania

Shaanan Cohney
University of Pennsylvania

Matthew Green
Johns Hopkins University

Nadia Heninger
University of Pennsylvania

Ralf-Philipp Weinmann
Comsecuris

Eric Rescorla
University of California, San

Diego

Hovav Shacham
University of California, San

Diego

ABSTRACT
In December 2015, Juniper Networks announced multiple
security vulnerabilities stemming from unauthorized code in
ScreenOS, the operating system for their NetScreen VPN
routers. The more sophisticated of these vulnerabilities was
a passive VPN decryption capability, enabled by a change to
one of the parameters used by the Dual EC pseudorandom
number generator.

In this paper, we describe the results of a full independent
analysis of the ScreenOS randomness and VPN key establish-
ment protocol subsystems, which we carried out in response
to this incident. While Dual EC is known to be insecure
against an attacker who can choose the elliptic curve param-
eters, Juniper had claimed in 2013 that ScreenOS included
countermeasures against this type of attack. We find that,
contrary to Juniper’s public statements, the ScreenOS VPN
implementation has been vulnerable to passive exploitation
by an attacker who selects the Dual EC curve point since
2008. This vulnerability arises due to flaws in Juniper’s
countermeasures as well as a cluster of changes that were
all introduced concurrently with the inclusion of Dual EC
in a single 2008 release. We demonstrate the vulnerability
on a real NetScreen device by modifying the firmware to
install our own parameters, and we show that it is possible
to passively decrypt an individual VPN session in isolation
without observing any other network traffic. This incident is
an important example of how guidelines for random number
generation, engineering, and validation can fail in practice.
Additionally, it casts further doubt on the practicality of
designing a safe “exceptional access” or “key escrow” scheme

The original version of this paper is entitled “A Systematic
Analysis of the Juniper Dual EC Incident” and was published
in Proceedings of the 23rd ACM Conference on Computer
and Communications Security (Vienna, 2016), 468–79.

Authors’ original version.
CACM version DOI: 10.1145/3266291
Copyright 2018 ACM.

of the type contemplated by law enforcement agencies in the
United States and elsewhere.

1. INTRODUCTION
In December 2015, Juniper announced that an “internal

code review” revealed the presence of “unauthorized code in
ScreenOS that could allow a knowledgeable attacker [. . .]
to decrypt VPN connections.” In response to this, Juniper
released patched versions of ScreenOS, the operating system
powering the affected NetScreen devices, but has declined
to disclose any further information about the intrusion and
vulnerability.

Immediately following Juniper’s advisory, security researchers
around the world — including our team — began examining
the ScreenOS firmware to find the vulnerabilities Juniper
had patched. They found that the change that rendered
ScreenOS encryption breakable did nothing but replace a
few embedded constants in Juniper’s pseudorandom number
generator. The reason why this results in an attacker being
able to decrypt connections is Juniper’s design decision to
use the NSA-designed Dual EC pseudorandom number gener-
ator (PRNG) [4, 12]. Dual EC has the problematic property
that an attacker who knows the discrete logarithm of one of
the input parameters (Q) with respect to a generator point,
and is able to observe a small number of consecutive bytes
from the PRNG, can then compute the internal state of the
generator and thus predict all future output. Thus, it is
critical that the discrete logarithm of Q remain unknown.
The changes to the ScreenOS code replaced Juniper’s chosen
Q with one selected by the attacker.

From one perspective, the Juniper incident is just a par-
ticularly intricate software vulnerability, which is interesting
on its own terms. More importantly, however, it sheds light
on the contentious topic of “exceptional access” technologies
which would allow law enforcement officials to gain access to
the plaintext for encrypted data. A key component of any
exceptional access system is restricting access to authorized
personnel, with the most commonly proposed approach being
encrypting the target keying material under a key (or keys)
known to law enforcement which are then kept under tight

control. The use of Dual EC in ScreenOS creates what is
in effect an exceptional access system with Q as the public
key and the the discrete log of Q as the private decryption
key. Historically, analysis of exceptional access systems has
focused on the difficulty of controlling the decryption keys
and in the specific case of ScreenOS, we do not know whether
anyone had access to the corresponding key, but the Juniper
incident starkly illustrates another risk: that of an attacker
modifying a system’s exceptional access capability in order to
replace the authorized public key with one under her control,
thus turning an exceptional access system designed for use
by law enforcement into one which works for the attacker.

In this paper, we attempt to tell the story of that incident,
pieced together by forensic reverse engineering of dozens of
ScreenOS firmware revisions stretching back nearly a decade,
as well as experimental validation on NetScreen hardware.
We first provide background on Dual EC itself, then examine
the way that it is used in ScreenOS and why this leads to
such a severe vulnerability, then move to examine the history
of the incident itself, and finally consider what lessons we
can draw from this story.

2. DUAL EC IN SCREENOS
Cryptographic systems typically include deterministic pseu-

dorandom number generators (PRNGs) that expand a small
amount of secret internal state into a stream of values which
are intended to be indistinguishable from true randomness.
An attacker able to predict the output of a PRNG will often
be able to break any protocol implementation dependent on
it, for instance by being able to predict cryptographic keys
(which should remain secret) or nonces (which should often
remain unpredictable).

Dual EC is a cryptographic PRNG standardized by NIST
which is based on operations on an elliptic curve. Dual EC
has three public parameters: the elliptic curve and two points
on the curve called P and Q. ScreenOS uses the elliptic curve
P-256 and sets P to be P-256’s standard generator as specified
in NIST Special Publication 800-90 [4]. That standard also
specifies the Q to use, but ScreenOS uses Juniper’s own
elliptic curve point Q instead. The finite field over which
P-256 is defined has roughly 2256 elements. Points on P-256
consist of pairs of 256-bit numbers (x, y) that satisfy the
elliptic curve equation. The internal state of Dual EC is a
single 256-bit number s.

Let x(·) be the function that returns the x-coordinate of
an elliptic curve point; ‖ be concatenation; lsbn(·) be the
function that returns the least-significant n bytes of its input
in big-endian order; and msbn(·) be the function that returns
the most-significant n bytes. Starting with an initial state
s0, one invocation of Dual EC implementation generates a
32 pseudorandom byte output and a new state s2 as

s1 = x(s0P) r1 = x(s1Q)

s2 = x(s1P) r2 = x(s2Q)

output = lsb30(r1) ‖ msb2

(
lsb30(r2)

)
,

where sP and sQ denote scalar multiplication on P-256.
In 2007, Shumow and Ferguson showed [16] that Dual EC

was subject to a state reconstruction attack by an adversary
who knows the value d such that P = dQ and who can observe
a single output value. The key insight is that multiplying
the point s1Q by d yields the internal state x(d · s1Q) =
x(s1P) = s2. Although s1Q is itself not known, 30 of the

Listing 1: The core ScreenOS 6.2 PRNG subroutines.

1 char block[8], seed[8], key[24]; // X9.31 vars
2 char output[32]; // prng_generate output
3 unsigned int index, calls_since_reseed;
4
5 void prng_reseed(void) {
6 calls_since_reseed = 0;
7 if (dualec_generate(output, 32) != 32)
8 error("[...] unable to reseed\n", 11);
9 memcpy(seed, output, 8);

10 index = 8;
11 memcpy(key, &output[index], 24);
12 index = 32;
13 }
14
15 void prng_generate(void) {
16 int time[2] = { 0, get_cycles() };
17 index = 0;
18 ++calls_since_reseed;
19 if (!one_stage_rng())
20 prng_reseed();
21 for (; index <= 31; index += 8) {
22 // FIPS checks removed for clarity
23 x9_31_generate_block(time, seed, key, block);
24 // FIPS checks removed for clarity
25 memcpy(&output[index], block, 8);
26 }
27 }

32 bytes of its x-coordinate (namely r1) constitute the first
30 bytes of output, and the attacker can guess the remaining
bytes; the x-coordinate of an elliptic curve point determines
its y-coordinate up to sign.

Assuming that the attacker knows the discrete log of Q,
the major difficulty is recovering a complete output value;
an attacker who only knows part of the value must exhaus-
tively search the rest. The number of candidates grows
exponentially as fewer bytes of r1 are revealed, and recovery
is intractable with fewer than about 26 bytes. In ScreenOS,
Dual EC is always used to generate 32 bytes of output at
a time, and therefore the attack is straightforward. When
30 bytes of r1 are available, as in Juniper’s implementation,
the attacker must consider 216 candidate points. From the
attacker’s perspective, this is the optimal situation.

Importantly, as far as is publicly known, Dual EC is secure
against an attacker who knows P and Q but does not know d,
as recovering d would require the ability to compute discrete
logarithms, which would break elliptic curve cryptography
in general.

3. THE SCREENOS PRNG SUBSYSTEM
Listing 1 shows the decompiled source code for the func-

tions implementing the PRNG in ScreenOS version 6.2.0r1;
the same function is present in other releases in the 6.2 and
6.3 series. It consists of two PRNGs, Dual EC and ANS
X9.31 [2, Appendix A.2.4].

Note that identifiers such as function and variable names
are not present in the binary; we assigned these names based
on our analysis of the apparent function of each symbol.
Similarly, specific control flow constructs are not preserved
by the compilation/decompilation process. For instance, the
for loop on line 21 may in fact be a while loop or some
other construct in Juniper’s source code. Decompilation does,
however, preserve the functionality of the original code. For

clarity, we have omitted FIPS checks that ensure that the
X9.31 generator has not generated duplicate output.

A superficial reading of the prng_generate() function
suggests that Dual EC is used only to generate keys for
the X9.31 PRNG, and that it is the output of X9.31 that
is returned to callers (in the output global buffer). The
Dual EC vulnerability described in Section 2 requires raw
Dual EC output, so it cannot be applied. Indeed, a 2013
knowledge base article by Juniper [8] claims exactly this.
(We discuss this knowledge base article further in Section 6.)

In this reading, the prng_reseed() function is occasionally
invoked to reseed the X9.31 PRNG state. This function
invokes the Dual EC generator, directing its output to the
32-byte buffer output. From this buffer, it extracts a seed
and cipher key for the X9.31 generator. With X9.31 seeded,
the prng_generate() function generates 8 bytes of X9.31
output at a time (line 23) into output, looping until it has
generated 32 bytes of output (lines 21–26). Each invocation
of x9_31_generate_block updates the X9.31 seed state in
the seed buffer.

The straightforward reading given above is wrong.
First, and most importantly, index, the control variable for

the loop that invokes the X9.31 PRNG in prng_generate()

at line 21, is a global variable. The prng_reseed() function,
if called, sets it to 32, with the consequence that, whenever
the PRNG is reseeded, index is already greater than 31 at
the start of the loop and therefore no calls to the X9.31
PRNG are executed.1

Second, in the default configuration, one_stage_rng() al-
ways returns false, so prng_reseed() is always called. In the
default configuration, then, the X9.31 loop is never invoked.
(There is an undocumented ScreenOS command, set key

one-stage-rng, that makes one_stage_rng() always return
true; running this command induces a different PRNG vul-
nerability, discussed in the full version of this paper [5].)

Third, the prng_reseed() happens to use the output

global buffer as a staging area for Dual EC output before it
copies parts of that output to the other global buffers that
hold the X9.31 seed and key. This is the same global buffer
that the prng_generate() function was supposed to fill with
X9.31 output, but fails to. When callers look for PRNG
output in output, what they find is 32 bytes of raw Dual EC
output.

For comparison, Listing 2 shows the decompiled source
code for the PRNG function in ScreenOS 6.1, before Juniper’s
revamp. In ScreenOS 6.1, the loop counter, index, is a local
variable rather than a global; the X9.31 PRNG is reseeded
from system entropy every 10,000 calls, instead of every
call and from Dual EC; and PRNG output is placed in a
caller-supplied buffer instead of a global variable.

In addition, the ScreenOS 6.1 PRNG subsystem produces
20 bytes at a time, not 32 bytes as in ScreenOS 6.2 and
6.3. We discuss the significance of this difference in the next
section.

4. INTERACTION WITH IKE
ScreenOS implements the IPsec VPN protocol. To choose

the keys that protect a VPN session, the client and the

1The global variable reuse was first publicly noted by Willem
Pinckaers on Twitter. Online: https://twitter.com/
dvorak/status/679109591708205056, retrieved Febru-
ary 18, 2016.

Listing 2: The core ScreenOS 6.1 PRNG subroutine.

1 char block[8], seed[8], key[24]; // X9.31 vars
2 unsigned int calls_since_reseed;
3
4 void prng_generate(char *output) {
5 unsigned int index = 0;
6 // FIPS checks removed for clarity
7 if (calls_since_reseed++ > 9999)
8 prng_reseed();
9 // FIPS checks removed for clarity

10 int time[2] = { 0, get_cycles() };
11 do {
12 // FIPS checks removed for clarity
13 x9_31_generate_block(time, seed, key, block);
14 // FIPS checks removed for clarity
15 memcpy(&output[index], block, min(20-index, 8));
16 index += min(20-index, 8);
17 } while (index <= 19);
18 }

ScreenOS device perform an Internet Key Exchange (IKE) [7,
11] handshake.

In the same version 6.2 release of ScreenOS that added
Dual EC (Section 2) and modified the PRNG subsystem to
expose raw Dual EC output (Section 3), Juniper made a
cluster of IKE implementation changes that make it possible
for an attacker who knows the Dual EC secret d to decrypt
VPN connections. In the remainder of these sections, we
provide a brief description of the relevant features of IKE
and then explain the impact of these changes.

4.1 Overview of IKE
IKE and its successor IKEv2 are traditional Diffie–Hellman-

based handshake protocols in which two endpoints (dubbed
the initiator and the responder) establish a Security Associ-
ation (SA) consisting of parameters and a set of keys used
for encrypting traffic. Somewhat unusually, IKE consists of
two phases:
Phase 1 establishes an “IKE SA” that is tied to the end-

points but not to any particular class of non-IKE network
traffic. In this phase, the two sides exchange Diffie–Hellman
(DH) shares and nonces, which are combined to form the de-
rived keys. The endpoints may be authenticated in a variety
of ways including a signing key and a statically configured
shared secret.

Phase 2 establishes SAs that protect non-IKE traffic (typ-
ically IPsec). The IKE messages for this phase are protected
with keys established in the first phase. This phase may
involve a DH exchange but may also just consist of an ex-
change of nonces, in which case the child SA keys are derived
from the shared secret established in the first phase.

IKEv2 refers to these phases as “Initial Exchange” and
“CREATE CHILD SA,” respectively; for simplicity we will use
the IKEv1 phase 1/phase 2 terminology in the rest of this
article.

An attack on IKE where ScreenOS is the responder would
proceed as follows: (1) using the responder nonce in the
first phase, compute the Dual EC state; (2) predict the
responder’s DH private key and use that to compute the DH
shared secret for the IKE SA, which is used to generate the
first set of keys (3) using these traffic keys decrypt the second
phase traffic to recover both initiator and responder nonces
and public keys; (4) recover the responder’s private key,

either by running Dual EC forward (the best case scenario)
or by repeating the Dual EC attack using the new responder
nonce; (5) use the responder’s private key and the initiator’s
public key to compute the shared secret for the second phase
SA and thereby the traffic keys; and (6) use the traffic keys
to decrypt the VPN traffic.

However, while this is straightforward in principle, there
are a number of practical complexities and potential imple-
mentation decisions which could make this attack easier or
more difficult (or even impractical) as described below.

4.2 Nonce Size
For Dual EC state reconstruction to be possible, the at-

tacker needs more than just to see raw Dual EC output.
She needs at least 26 bytes of the x-coordinate of a single
elliptic-curve point to recover the Dual EC state; fewer bytes
would be insufficient (see Section 2).

Luckily for the attacker, the first 30 bytes of the 32 bytes
returned by ScreenOS’s Dual EC implementation belong to
the x-coordinate of a single point, as we saw in Section 2.
Luckily again for the attacker, ScreenOS’s PRNG subsys-
tem also returns 32 bytes when called, and these are the
32 bytes returned by a Dual EC invocation, as we saw in
Section 3. Finally, IKE nonces emitted by ScreenOS are
32 bytes long and produced from a single PRNG invocation.
To summarize: In ScreenOS 6.2 and 6.3, IKE nonces always
consist of 30 bytes of one point’s x-coordinate and 2 bytes
of the next point’s x-coordinate — the best-case scenario for
Shumow–Ferguson reconstruction.

It is worth expanding on this point. The IKE standards
allow any nonce length between 8 and 256 bytes [7, Section
5]. An Internet-wide scan of IKE responders by Adrian
et al. [3] found that a majority use 20-byte nonces. We
are not aware of any cryptographic advantage to nonces
longer than 20 bytes. ScreenOS 6.1 sent 20-byte nonces and,
as we noted in Section 3, its PRNG subsystem generated
20 bytes per invocation. In ScreenOS 6.2, Juniper introduced
Dual EC, rewrote the PRNG subsystem to produce 32 bytes
at a time, and modified the IKE subsystem to send 32-byte
nonces.

4.3 Nonces and DH Keys
An attacker who knows the d corresponding to Juniper’s

point Q and observes an IKE nonce generated by a ScreenOS
device can recompute the device’s Dual EC state at nonce
generation time. She can roll that state forward to predict
subsequent PRNG outputs, though not back to recover earlier
outputs. ScreenOS uses its PRNG to generate IKE Diffie–
Hellman shares, so the attacker will be able to predict DH
private keys generated after the nonce she saw and compute
the session keys for the VPN connections established using
those IKE handshakes.

This scenario is clearly applicable when the attacker has a
network tap close to the ScreenOS device, and can observe
many IKE handshakes. But what if the attacker’s network
tap is close to the VPN client instead? She might observe
only a single VPN connection. If the nonce for a connection
is generated after the DH share, the attacker will not be able
to recover that session’s keys.

A superficial reading of the ScreenOS IKE code seems to
rule out single-connection attacks: The KE payload contain-
ing the DH share is indeed encoded before the Nr payload
containing the nonce.

Nonces 1 2 3 4

MODP
1024

5 6

(a) At system startup.

Nonces 2 3 4 7

MODP
1024

6 8

(b) After a DH exchange.

Figure 1: Nonce queue behavior during an IKE handshake.
Numbers denote generation order, and values generated after
the handshake are shaded. During a DH exchange, outputs
1 and 5 are used as the nonce and key, advancing the queue,
and new outputs are generated to fill the end of the queue.

Conveniently for the attacker, however, ScreenOS also
contains a pre-generation feature that maintains a pool of
nonces and DH keys that can be used in new IKE connections,
reducing handshake latency. The pooling mechanism is quite
intricate and appears to be designed to ensure that enough
keys are always available while avoiding consuming too much
run time on the device.

Independent FIFO queues are maintained for nonces, for
each supported finite field DH group (MODP 768, MODP

1024, MODP 1536, and MODP 2048), and (in version 6.3) for
each supported elliptic curve group (ECP 256 and ECP 384).
The sizes of these queues depend on the number of VPN
configurations that have been enabled for any given group.
For instance, if a single configuration is enabled for a group
then that group will have queue size of 2. The size of the
nonce queue is set to be twice the aggregate size of all of
the DH queues. At startup, the system fills all queues to
capacity. A background task that runs once per second adds
one entry to a queue that is not full. If a nonce or a DH
share is ever needed when the corresponding queue is empty,
a fresh value is generated on the fly.

The queues are filled in priority order. Crucially, the nonce
queue is assigned the highest priority; it is followed by the
groups in descending order of cryptographic strength (ECP
384 down to MODP 768). This means that in many (but not
all) cases, the nonce for an IKE handshake will have been
drawn from the Dual EC output stream earlier than the DH
share for that handshake, making single-connection attacks
feasible.

Figure 1 shows a (somewhat idealized) sequence of gener-
ated values, with the numbers denoting the order in which
queue entries were generated, before and after an IKE phase 1
exchange. Figure 1a shows the situation after startup: The
first four values are used to fill the nonce queue and the next
two values are used to generate the DH shares. Thus, when
the exchange happens, it uses value 1 for the nonce and value
5 for the key, allowing the attacker to derive the Dual EC
state from value 1 and then compute forward to find the
DH share. After the phase 1 exchange, which consumes a
DH share and a nonce, and after execution of the periodic,
queue-refill task, the state is as shown in Figure 1b, with the
new values shaded.

Depending on configuration, the IKE phase 2 exchange
would consume either a nonce and a DH share or just a
nonce. If the exchange uses both a nonce and a DH share,
the dequeued nonce will again have been generated before the
dequeued DH share. That property will continue to hold for
subsequent IKE handshakes, provided that handshakes do not
entirely exhaust the queues. Had the refill task not prioritized

refilling the nonce queue before any DH group queue, single-
connection attacks would not have been possible. Had the
nonce queue been the same length as a DH share queue,
single-connection attacks would not have been possible in
configurations where IKE phase 2 consumed a nonce but not
a DH share.

ScreenOS 6.1 pregenerates DH shares but not nonces; the
nonce queues we have described were added in ScreenOS 6.2,
along with Dual EC. Had nonce queues not been added, no
handshakes would have been vulnerable to single-connection
decryption attacks.

In the presence of multiple nonce-only phase-2 exchanges
within a single phase-1 exchange, multiple DH groups actively
used in connections, queue exhaustion, or certain race condi-
tions, the situation is more complicated, and it is possible
for an IKE handshake phase to have its DH share generated
before its nonce. Single-connection decryption attacks would
fail for those handshakes. Refer to the full version of this
paper for details [5].

4.4 Recovering traffic keys
If the attacker can predict the Diffie–Hellman private key

corresponding to the ScreenOS device’s DH share for an
IKE exchange, she can compute the DH shared secret for
that exchange. With knowledge of the DH shared secret,
computing the session keys used to encrypt and authenticate
the VPN session being set up is straightforward, though the
details depend on the IKE protocol version and the way in
which the endpoints authenticate each other; for details, see
the full version of this paper [5].

For IKEv1 connections authenticated with digital signa-
tures, the attacker knows everything she needs to compute
the session keys. For IKEv1 connections authenticated with
public key encryption, each peer’s nonce is encrypted under
the other’s RSA public key, stopping the attack. IKEv1 con-
nections authenticated with preshared keys fall somewhere in
the middle: The attacker will need to know the preshared key
in addition to the DH shared secret to compute the session
keys. If the preshared key is strong, then the connection will
still be secure. Fortunately for the attacker, many real-world
VPN configurations use weak preshared keys (really pass-
words); in such cases having recorded an IKE handshake and
recovered the DH shared secret, the attacker will be able to
mount an offline dictionary attack on the preshared key. By
contrast, the attacker will be able to compute session keys
for IKEv2 connections in the same way, regardless of how
they are authenticated.

Having computed the session keys, the attacker can decrypt
and read the VPN traffic and, if she wishes, can tamper with
it.

5. EXPERIMENTAL VALIDATION
To validate the attacks we describe above, we purchased

a Juniper Secure Services Gateway 550M VPN device. We
generated our own point Q and corresponding Dual EC se-
cret d. We modified firmware version 6.3.0r12 to put in place
our point Q, matching Dual EC Known Answer Test (KAT)
values, and the (non-cryptographic) firmware checksum, and
we installed the modified firmware on our device. (Our device
did not have a code-signing certificate installed, so we did
not need to create a valid cryptographic signature for our
modified firmware.)

Using the new firmware, we configured the device with

three separate VPN gateways, configured for IKEv1 with a
preshared key, IKEv1 with a 1024-bit RSA signing certificate,
and IKEv2 with a preshared key, respectively. We made
connections to each gateway using the strongSwan VPN
software as our initiator and recorded the traffic to our device.
We successfully decrypted each connection by recovering the
Dual EC state and traffic keys using just that connection’s
captured packets.

6. HISTORY OF THE JUNIPER INCIDENT
The history of the Juniper incident begins nearly a decade

ago.2 In October 2008, Juniper released ScreenOS 6.2. As
described in detail above, this release (1) replaced an entropy-
gathering procedure for (re)seeding the ANS X9.31 PRNG
with Dual EC using a custom Q point; (2) modified the
X9.31 reseed logic to reseed on every call rather than ev-
ery ten thousand calls; (3) changed the loop counter in the
prng_generate procedure as well as the procedure’s output
to be global variables, shared with the reseed procedure,
thus ensuring that pseudorandom values are generated by
Dual EC, and not X9.31; (4) changed the IKE nonce length
from 20 bytes to 32 bytes; and (5) added a nonce pregenera-
tion queue.

The result of the first four changes is that whoever knew
the integer d corresponding to Juniper’s Q could passively
decrypt (some) VPN traffic. Each of the first four changes
is critical to the attack described in this article. The fifth
change enables single-connection attacks in many cases, but
is not necessary for multi-connection attacks.

This state of affairs continued for four years. At some
point prior to the release of ScreenOS 6.2.0r15 (September
2012) and ScreenOS 6.3.0r12 (August 2012), someone modi-
fied Juniper’s source code. Based on the patched firmware
revisions Juniper would later release, the modifications were
quite small: The x-coordinate of Juniper’s Dual EC’s Q was
changed as was the expected response to Dual EC’s Known
Answer Test. As a result, the set of people who could pas-
sively decrypt ScreenOS’s VPN traffic changed from those
who know Juniper’s d (if any) to those who know the new d
corresponding to the changed Q (presumably the attacker
who made the change).

Apparently unrelated to the 2012 changes, a second source
code modification was made. A hard-coded SSH and Telnet
password was inserted into Juniper’s code at some point
before the release of ScreenOS 6.3.0r17 (April 2013). Logging
in with this password yields administrator access.

In early September 2013, the New York Times published
an article based on documents from Snowden strongly imply-
ing that the NSA had engineered Dual EC to be susceptible
to attack [15]. The article does not name Dual EC; it instead
refers to a 2006 NIST standard with a“fatal weakness, discov-
ered by two Microsoft cryptographers in 2007,” presumably
referring to Dan Shumow and Niels Ferguson’s presentation
at CRYPTO 2007 [16]. This reporting led NIST to withdraw
its recommendation for Dual EC [14].

After NIST withdrew its recommendation, Juniper subse-
quently published a knowledge base article explaining their
use of Dual EC in ScreenOS.

ScreenOS does make use of the Dual EC DRBG

2The dates in this section come from file dates, ScreenOS
release notes, and Juniper’s website, none of which agree
precisely on any dates.

standard, but is designed to not use Dual EC DRBG
as its primary random number generator. ScreenOS
uses it in a way that should not be vulnerable
to the possible issue that has been brought to
light. Instead of using the NIST recommended
curve points it uses self-generated basis points and
then takes the output as an input to FIPS/ANSI
X.9.31 [sic] PRNG, which is the random num-
ber generator used in ScreenOS cryptographic
operations. [8]

The first mitigation — using self-generated basis points —
only defends against the attacks described in this paper
if Q is generated so that nobody knows d; Juniper has pro-
vided no evidence that this is the case. As we describe in
Section 3, Juniper’s claim that the output of Dual EC is only
used as an input to X9.31 is incorrect.

This was the situation on December 17, 2015 when Juniper
issued an out-of-cycle security bulletin [9] for two security is-
sues in ScreenOS: CVE-2015-77553 (“Administrative Access”)
and CVE-2015-77564 (“VPN Decryption”).

This announcement was particularly interesting because
it was not the usual report of developer error, but rather of
malicious code which had been inserted into ScreenOS by an
unknown attacker:

During a recent internal code review, Juniper
discovered unauthorized code in ScreenOS that
could allow a knowledgeable attacker to gain ad-
ministrative access to NetScreen R© devices and
to decrypt VPN connections. Once we identified
these vulnerabilities, we launched an investiga-
tion into the matter, and worked to develop and
issue patched releases for the latest versions of
ScreenOS. [10]

The bulletin prompted a flurry of reverse-engineering ac-
tivity around the world, including by our team. The “Ad-
ministrative Access” issue was quickly identified as the 2013
source code modification. This issue has been extensively
discussed by Moore [13]. Our analysis of the “VPN Decryp-
tion” issue, described in this article, shows that the 2012
code modification is responsible.

Our analysis implies several items of note. First, the 2012
code modification indicates that Juniper’s 2013 knowledge
base article [8] is incorrect when it states that ScreenOS
uses Juniper’s own Q point since, at that time, ScreenOS
was shipping with the attacker’s Q. Second, by the end
of 2015, Juniper knew that Dual EC could be exploited in
ScreenOS. Despite this, Juniper’s initial fix was to revert
the Q point to their initial value in each affected ScreenOS
revision. Eventually, after press coverage of our results,
Juniper committed to removing Dual EC from their PRNG
subsystem.

7. EXCEPTIONAL ACCESS AND NOBUS
Law enforcement officials have been warning since 2014

that they are “going dark”: that ubiquitous end-to-end en-
cryption threatens investigations by rendering intercepted

3http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-7755
4http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-7756

communications unreadable. They have called on technol-
ogy companies to rearchitect their products so intercepted
communications could be decrypted given a court order.
Computer scientists have resisted such “exceptional access”
mandates, arguing that whatever mechanism implements it
would constitute a vulnerability that might be exploited by
third parties [1].

Attempts to design exceptional access mechanisms which
do not introduce vulnerabilities go back at least as far as
1993, when the NSA introduced “Clipper,” an encryption
algorithm embedded in a hardware platform with a built-in
“key escrow” capability, in which cryptographic keys were sep-
arately encrypted under a key known to the US government.
Such a mechanism would be “NOBUS,” in the jargon of the
National Security Agency (NSA), for “nobody but us” [6,
p. 281]: data would be cryptographically secure against any-
one who did not have the keys but transparent to those who
did.

While the key escrow mechanism designed for Clipper
involved encrypting the traffic keys under the escrow key,
it is also possible to build an exceptional access mechanism
around a system like Dual EC, with the escrow key being
the discrete log of Q. The common thread here is that the
key is intended to be known only to authorized personnel.

Whatever the intent of Juniper’s selection of Dual EC, its
use created what was in effect an exceptional access system:
one where the key was the d value corresponding to Juniper’s
choice of Q. We have no way of knowing whether anyone
knew that d value or not, and Juniper has not described how
they generated Q. However, around 2012, some organization
gained the ability to make changes to Juniper’s source code
repository. They used that access to change the Dual EC
point Q to one of their choosing, in essence swapping out the
escrow key. Between September 2012 and December 2015,
official releases of ScreenOS distributed by Juniper included
the intruders’ point Q instead of Juniper’s. VPN connections
to NetScreen devices running affected releases were subject
to decryption by the intruders, assuming they know the
d corresponding to their point Q.

8. LESSONS
The ScreenOS vulnerabilities we have studied provide im-

portant broader lessons for the design of cryptographic sys-
tems, which we summarize below.

For protocol designers. Allowing nonces to vary in length,
and in particular to be larger than necessary for uniquely
identifying sessions, may be a bad idea. The authors are
unaware of any cryptographic rationale for 256-byte nonces,
as permitted by IPsec; it is simply an invitation for imple-
mentations to disclose sensitive state, intentionally or not.5

Adding even low-entropy shared secrets as key derivation
inputs helps protect against entropy failures. We observe
a difference in exploitability of the ScreenOS bugs between
IKEv1 and IKEv2 that is entirely due to the different use of
the PSK between the two protocols. It is unfortunate that
IKEv2 is easier to exploit.

For implementers and code reviewers. Cryptographic
code must be locally auditable: It must be written in such

5Of course, reducing nonce size cannot prevent all data
exfiltration strategies. However, it may increase the difficulty
of hiding the necessary code, and the complexity of executing
an attack.

a way that examining a function or a module in isolation
allows the reader to understand its behavior.

ScreenOS’s implementation failed to live up to this guide-
line. A loop counter in the core prng_generate routine was
defined as a global variable and changed in a subroutine.
This is a surprising-enough pattern that several experienced
researchers who knew that the routine likely had a bug
failed to spot it before Willem Pinckaers’ contribution. The
prng_generate and prng_reseed routines reuse the same
32-byte buffer, output, for two entirely different purposes:
Dual EC output with which to seed X9.31, and output from
the PRNG subsystem. ScreenOS’s use of pregeneration
queues makes it difficult to determine whether nonces or
Diffie–Hellman shares are generated first. Someone reading
the code for the top-level functions implementing IKE in iso-
lation will conclude that Diffie–Hellman shares are generated
first, whereas in practice the opposite is usually the case.

The state recovery attacks suffered by Juniper suggest that
implementations may wish to avoid revealing the raw output
of a random number generator entirely, perhaps by hashing
any PRNG output before using it as a nonce. One could also
design implementations so that separate PRNGs are used
for different protocol components, to separate nonce security
from key security.

Several of the above mistakes represent poor software
engineering practices. Cryptographic code reviews, whether
internal or external (e.g., for FIPS validation), should take
code quality into account.

For NIST. Juniper followed then-current best practices
in designing and verifying their random number generators.
They used a NIST-certified algorithm, followed the FIPS-
recommended procedure to verify the output using test vec-
tors, and followed a commonly recommended engineering
guideline to use a PRNG as a whitener for a potentially
insecure random number generator, removing — at least in
theory — the structured output that makes Dual EC vulner-
able.

In this case, all three approaches failed. In particular, a
crippling defect in the whitening countermeasure managed to
go undetected in FIPS certification. This suggests potential
future work for research in the verification of cryptographic
systems. One step would be to track the origin and use of
any buffers — especially shared buffers — and enforce a rule
that all random number generator output can be traced back
to an appropriate cryptographic function, such as a block
cipher or hash. Some form of coverage analysis might also
have revealed that the whitening is never performed.

To the extent that FIPS guidelines mandate the use of
global state, they run counter to our suggestion, above, that
cryptographic code be locally auditable.

Products are evaluated against FIPS standards by accred-
ited laboratories. ScreenOS was FIPS certified with the
X9.31 PRNG, yet the lab evaluating ScreenOS failed to spot
that X9.31 was never invoked, as well as failing to detect the
defect in the Dual EC implementation described in Section 3.
NIST should revisit its laboratory accreditation program
to ensure more thorough audits, especially of randomness
subsystem code.

For attackers. The choice by the attacker to target the
random number generation subsystem is instructive. Random
number generators have long been discussed in theory as a
target for kleptographic substitution attacks [18], but this

incident tells us that the threat is more real than has been
known in the academic literature.

From the perspective of an attacker, by far the most at-
tractive feature of the ScreenOS PRNG attack is the ability
to significantly undermine the security of ScreenOS without
producing any externally detectable indication that would
mark the ScreenOS devices as vulnerable. This is in contrast
to previous well-known PRNG failures, which were externally
observable, and, in the case of the Debian PRNG flaw [17],
actually detected through observational testing. Indeed,
the versions of ScreenOS containing an attacker-supplied
parameter appear to have produced output that was cryp-
tographically indistinguishable from the output of previous
versions, thus preventing any testing or measurement from
discovering the issue.

For journalists. Much of the coverage of the Juniper disclo-
sure has focused on the unauthorized changes made in 2012
to the randomness subsystem and in 2014 to the login code.
By contrast, our forensic investigation of ScreenOS releases
highlights the changes made in the 6.2 series, in 2008, as the
most consequential.

These changes, which introduced Dual EC and changed
other subsystems in such a way that an attacker who knew
the discrete log of Q could exploit it, were, as far as we know,
added by Juniper engineers, not by attackers. This raises a
number of questions:

How was the new randomness subsystem for the ScreenOS
6.2 series developed? What requirements did it fulfill? How
did Juniper settle on Dual EC? What organizations did it
consult? How was Juniper’s point Q generated?

We are not able to answer these questions with access to
firmware alone. Juniper’s source code version-control system,
their bug-tracking system, their internal e-mail archives, and
the recollections of Juniper engineers may help answer them.

Despite numerous opportunities, including public questions
put to their Chief Security Officer and a congressional hear-
ing on this incident,6 Juniper has either failed or explicitly
refused to provide any further details.

For policymakers. Much of the debate about exceptional
access has focused on whether it is possible to construct
secure exceptional access mechanisms, where “secure” is de-
fined as only allowing authorized access — presumably by
law enforcement. It is readily apparent that one of the major
difficulties in building such a system is the risk of compromise
of whatever keying material is needed to decrypt the targeted
data.

The unauthorized change to ScreenOS’s Dual EC constants
made in 2012 illustrates a new threat: the ability for another
party to modify the target software to subvert an exceptional
access mechanism for its own purposes, with only minimally
detectable changes. Importantly, because the output of the
PRNG appears random to any entity that does not know
the discrete log of Q, such a change is invisible both to users
and to any testing which the vendor might do. By contrast,
an attacker who wants to introduce an exceptional access
mechanism into a program which does not already has one
must generally make a series of extremely invasive changes,
thus increasing the risk of detection.

6Online: https://oversight.house.gov/hearing/
federal-cybersecurity-detection-response-and-
mitigation/.

In the case of ScreenOS, an attacker was able to subvert
a major product — one which is used by the federal govern-
ment — and remain undiscovered for years. This represents
a serious challenge to the proposition that it is possible to
build an exceptional access system that is available only to
the proper authorities; any new proposal for such a system
should bear the burden of proof of showing that it cannot
be subverted in the way that ScreenOS was.

Acknowledgments
This material is based in part upon work supported by the
U.S. National Science Foundation under awards EFMA-
1441209, CNS-1505799, CNS-1010928, CNS-1408734, and
CNS-1410031; The Mozilla Foundation; a gift from Cisco;
and the Office of Naval Research under contract N00014-14-
1-0333.

9. REFERENCES
[1] H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh,

M. Blaze, W. Diffie, J. Gilmore, M. Green, S. Landau,
P. G. Neumann, R. L. Rivest, J. I. Schiller, B. Schneier,
M. Specter, and D. J. Weitzner. Keys under doormats:
Mandating insecurity by requiring government access
to all data and communications. Communications of
the ACM, 58(10):24–26, Oct. 2015.

[2] Accredited Standards Committee (ASC) X9, Financial
Services. ANS X9.31-1998: Digital signatures using
reversible algorithms for the financial services industry
(rDSA), 1998. Withdrawn.

[3] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect
forward secrecy: How Diffie-Hellman fails in practice.
In C. Kruegel and N. Li, editors, Proceedings of CCS
2015, pages 5–17. ACM Press, Oct. 2015.

[4] E. Barker and J. Kelsey. NIST Special Publication
800-90: Recommendation for Random Number
Generation Using Deterministic Random Bit
Generators. Technical report, National Institute of
Standards and Technology, June 2006.

[5] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried,
S. Cohney, M. Green, N. Heninger, R.-P. Weinmann,
E. Rescorla, and H. Shacham. A systematic analysis of
the Juniper Dual EC incident. In S. Halevi, C. Kruegel,
and A. Myers, editors, Proceedings of CCS 2016, pages
468–79. ACM Press, Oct. 2016.

[6] J. S. Granick. American Spies: Modern Surveillance,
Why You Should Care, and What To Do About It.
Cambridge, 2017.

[7] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). RFC 2409 (Proposed Standard), Nov. 1998.
Obsoleted by RFC 4306, updated by RFC 4109. Online:
https://tools.ietf.org/html/rfc2409.

[8] Juniper Networks. Juniper Networks product
information about Dual EC DRBG. Knowledge Base
Article KB28205, Oct. 2013. Online:
https://web.archive.org/web/20151219210530/

https://kb.juniper.net/InfoCenter/index?page=

content&id=KB28205&pmv=print&actp=LIST.

[9] Juniper Networks. 2015-12 Out of Cycle Security
Bulletin: ScreenOS: Multiple Security issues with

ScreenOS (CVE-2015-7755, CVE-2015-7756), Dec.
2015.

[10] Juniper Networks. Important announcement about
ScreenOS R©. Online:
https://forums.juniper.net/t5/Security-

Incident-Response/Important-Announcement-

about-ScreenOS/ba-p/285554, Dec. 2015.

[11] C. Kaufman. Internet Key Exchange (IKEv2) Protocol.
RFC 4306 (Proposed Standard), Dec. 2005. Obsoleted
by RFC 5996, updated by RFC 5282. Online:
https://tools.ietf.org/html/rfc4306.

[12] J. Kelsey. Dual EC in X9.82 and SP 800-90A.
Presentation to NIST VCAT committee, May 2014.
Slides online
http://csrc.nist.gov/groups/ST/crypto-review/

documents/dualec_in_X982_and_sp800-90.pdf.

[13] H. D. Moore. CVE-2015-7755: Juniper ScreenOS
Authentication Backdoor. https://community.rapid7.
com/community/infosec/blog/2015/12/20/cve-2015-

7755-juniper-screenos-authentication-backdoor,
Dec. 2015.

[14] National Institute of Standards and Technology. NIST
opens draft Special Publication 800-90A,
recommendation for random number generation using
deterministic random bit generators for review and
comment. http://csrc.nist.gov/publications/
nistbul/itlbul2013_09_supplemental.pdf, Sept.
2013.

[15] N. Perlroth, J. Larson, and S. Shane. N.S.A. able to foil
basic safeguards of privacy on Web. The New York
Times, Sep. 5 2013. Online:
http://www.nytimes.com/2013/09/06/us/nsa-foils-

much-internet-encryption.html.

[16] D. Shumow and N. Ferguson. On the possibility of a
back door in the NIST SP800-90 Dual Ec Prng.
Presented at the Crypto 2007 rump session, Aug. 2007.
Slides online:
http://rump2007.cr.yp.to/15-shumow.pdf.

[17] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and
S. Savage. When private keys are public: Results from
the 2008 Debian OpenSSL vulnerability. In
A. Feldmann and L. Mathy, editors, Proceedings of
IMC 2009, pages 15–27. ACM Press, Nov. 2009.

[18] A. Young and M. Yung. Kleptography: Using
cryptography against cryptography. In W. Fumy,
editor, Proceedings of Eurocrypt 1997, volume 1233 of
LNCS, pages 62–74. Springer-Verlag, May 1997.

