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Abstract
The ability to execute code in an emulator is a fundamental

part of modern vulnerability testing. Unfortunately, this poses
a challenge for many embedded systems, where firmware ex-
pects to interact with hardware devices specific to the target.
Getting embedded system firmware to run outside its native
environment, termed rehosting, requires emulating these hard-
ware devices with enough accuracy to convince the firmware
that it is executing on the target hardware. However, full
fidelity emulation of target devices (which requires consid-
erable engineering effort) may not be necessary to boot the
firmware to a point of interest for an analyst (for example, a
point where fuzzer input can be injected). We hypothesized
that, for the firmware to boot successfully, it is sufficient to
emulate only the behavior expected by the firmware, and that
this behavior could be inferred automatically.

To test this hypothesis, we developed and implemented
Jetset, a system that uses symbolic execution to infer what
behavior firmware expects from a target device. Jetset can
then generate device models for hardware peripherals in C,
allowing an analyst to boot the firmware in an emulator (e.g.,
QEMU). We successfully applied Jetset to thirteen distinct
pieces of firmware together representing three architectures,
three application domains (power grid, avionics, and con-
sumer electronics), and five different operating systems. We
also demonstrate how Jetset-assisted rehosting facilitates fuzz-
testing, a common security analysis technique, on an avionics
embedded system, in which we found a previously unknown
privilege escalation vulnerability.

1 Introduction
Executing code in a controlled environment is a fundamental
part of modern systems analysis. Unfortunately, embedded
systems pose a challenge because their code expects to inter-
act with specialized on-chip and off-chip peripherals, such
as general-purpose I/O (GPIO) ports, sensors, and communi-
cation interfaces. The execution environment must emulate
these devices with sufficient fidelity to ensure that observed
behavior accurately mimics the target system running on
hardware. However, because of the large variety of peripheral
devices, most are not modeled by the execution environment,
creating a considerable blind spot for our most powerful anal-
ysis techniques. Indeed, there may be no documentation at
all about a target system, which makes building a complete
emulator for it nearly impossible.

In many cases, however, the code of interest to the sys-
tem analyst is not the code that interacts with peripherals.
While peripherals cannot be ignored completely—hardware
initialization must appear successful for the system to boot
successfully—correct behavior of all devices may not be nec-
essary. For example, an analyst interested in how a target
responds to network traffic may not require the execution
environment to faithfully model all aspects of the system’s
GPIO ports or other communication interfaces.

The subject of this work is Jetset, a system that performs
targeted rehosting of firmware—it automatically infers the
expected behavior of embedded system peripherals using only
its firmware and then synthesizes a model of the peripherals
sufficient to boot to security-critical code of interest. The syn-
thesized peripheral model can then be used in an emulator—in
our evaluation we used QEMU [4]—to emulate the hardware
environment. An analyst can then use her tool of choice to in-
teract with the firmware. For example, a vulnerability analyst
can use Jetset to fuzz-test the system to see how it responds
to malformed or otherwise malicious input. More advanced
dynamic analyses, like symbolic execution, are also available
to the analyst.

Jetset infers the values that need to be read from peripheral
devices needed for the program to reach an analyst-specified
goal address. For example, on the Raspberry Pi target used
in our evaluation, our goal is to reach the address where the
code jumps to user space. Our key insight is that firmware
code interacting with a peripheral device implicitly encodes
how the device must behave for the system to boot. Jetset
uses symbolic execution of the firmware—specifically the
angr framework [31]—to infer data returned from devices.
Our technique mitigates path explosion using guided sym-
bolic execution in which execution paths are selected using a
variation of Tabu Search [19] while minimizing the distance
to the goal.

The input to Jetset is the executable firmware image, the
firmware entry point (where to start execution), a goal address
(the address we want to reach in execution), and a memory
layout specifying which parts of the address space represent
RAM and which represent memory-mapped I/O. Jetset only
requires emulation support for the CPU architecture; it does
not require any special hardware, and does not use the under-
lying hardware device.

To evaluate Jetset, we use it to infer and instantiate periph-
eral devices for thirteen targets: an aircraft Communication



Management Unit (AMD 486-based system) used on the Boe-
ing 737, Linux on a Raspberry Pi 2 (ARM-based SoC board),
the first-stage bootloader on a BeagleBoard-xM (ARM-based
SoC board), a SEL-751 Feeder Protection Relay (Motorola
ColdFire-based system), and the 9 publicly available real-
world targets from prior comparable work[18]. These targets
are diverse—they come from 3 different architectures, 5 dif-
ferent operating systems (as well as 3 different bare metal
systems), and several different application domains. For each
target, Jetset infers the behavior of its peripherals needed
for the firmware to complete its boot sequence. Next, Jetset
produces C code suitable for use with QEMU that simulates
the inferred devices. We then run the firmware in QEMU
configured for the target CPU architecture using our synthetic
peripherals to complete the configuration.

For two of our targets, we confirm that the synthesized
devices work correctly by comparing the emulated system
against a reference. For the Raspberry Pi 2, we compare the
emulated behavior of the system to its behavior on actual
hardware. We use the AFL fuzzer [35] with QEMU to fuzz-
test the Linux kernel system call interface, obtaining the same
results both in QEMU and on the actual hardware. For the
Communication Management Unit (CMU), we use a high-
fidelity QEMU implementation of the system, including its
most important peripherals for comparison. We produced this
implementation by manually reverse-engineering the CMU
as our reference. We use AFL to fuzz-test the system call
interface of the underlying OS on both the reference and syn-
thesized implementations to confirm we observe the same
behavior on both. Although finding vulnerabilities was not
the goal of this testing, we nevertheless identified a previously
unknown privilege escalation vulnerability in the VRTX ker-
nel used by the CMU (Section 6.4.6).1

In summary, the main contributions of this paper are:

v Jetset: a tool for inferring the expected behavior of pe-
ripheral devices in an embedded system and synthesizing
an executable model of the device (§3).

v Guided symbolic execution using a search strategy based
on incremental control-flow graph construction (§4).

v An open source [1] implementation of Jetset using angr
and QEMU (§5).

v A demonstration of the general applicability of the Jetset
system on thirteen embedded system targets spanning
three architectures: x86, ARM, and Motorola ColdFire
(§6).

v A demonstration of how Jetset’s synthesized devices
were used to discover a previously unknown hardware-
reproducible privilege escalation vulnerability in the
VRTX kernel of the Collins CMU-900 Communications
Management Unit (§6.4.6).

1Note that this vulnerability is primarily of academic interest, as it is not
remotely exploitable and the CMU, while the conduit for digital messages to
and from the cockpit, is not considered safety critical for flight.

2 Related Work
Due to the complex nature of firmware and the heterogeneity
of the hardware it interacts with, security testing and analysis
of firmware is a difficult problem [27, 33]. Different tech-
niques to test and analyze firmware vary both in their goal
(e.g., finding bugs, full rehosting, or partial rehosting), as
well as the assumptions that they make about the firmware
they analyze. For example, a testing technique may only
analyze firmware using a particular operating system [7], or
may assume that auxillary information about the firmware is
available (e.g., firmware-hardware I/O traces [22]) to improve
results. The use case of Jetset—partial rehosting using only
the firmware itself and no auxillary information—is most sim-
ilar to other rehosting techniques, however, for completeness,
we outline other approaches to analyzing firmware below.

Firmware testing and analysis. Approaches have been de-
veloped to test firmware without attempting to create a stand-
alone emulator for the hardware.

Symdrive [30] is a symbolic testing framework for Linux
device drivers. Symdrive takes as input the C code for the
Linux drivers and attempts to find program paths that violate
user written assertions. Symdrive is able to uncover numerous
bugs in Linux device drivers; however, it requires source code
and is Linux specific.

FIE [15] is a symbolic execution framework that targets
firmware for the MSP430 family of microprocessors. FIE
takes as input a piece of firmware, a memory map (that de-
notes which regions are RAM, ROM, MMIO, etc), and an
interrupt specification which describes all locations where
interrupts could be fired. FIE is designed to analyze all
firmware execution paths, which, while effective for the sim-
pler MSP430 microcontroller firmware, is not feasible for
more complex firmware like the Raspberry Pi’s Linux kernel.
For this complex firmware, a more targeted approach (such as
Jetset’s search strategy described in Section 4) is needed. Fur-
thermore, FIE requires the source code for the firmware—this
is how it adds its symbolic execution instrumentation—and it
is therefore unsuitable for our needs.

Revnic [8] is a system for symbolically executing driver
firmware and reverse engineering its functionality. Revnic
takes as input a driver binary, a driver template describing
the high level functionality of the driver, and domain spe-
cific knowledge about the OS of the driver, and produces
source code for the driver. Revnic requires knowledge of the
underlying operating system, and requires that the user pro-
vide detailed device templates that outline the functionality
of the device, and it is therefore unsuitable for the problem of
firmware-only emulation.

FirmUSB [23] is a USB-specific symbolic execution frame-
work for analyzing USB microcontroller firmware. FirmUSB
takes as input a USB firmware image, and uses domain spe-
cific analyses to identify malicious behavior by the USB
device. For example, FirmUSB can detect if a device claim-



ing to be a USB keyboard is injecting keys that have not been
pressed by looking for USB specific information flows.
Hardware-in-the-loop emulation. Another method of ap-
proaching the problem of analyzing firmware is to attach a
software emulator running the firmware to the physical hard-
ware, forwarding I/O between the emulator and the firmware.

Avatar [34] is a dynamic analysis framework for embed-
ded systems that takes as input the (possibly instrumented)
firmware and the physical hardware, and creates an emula-
tion environment be forwarding I/O between them. Other
tools SURROGATES [25] and PROSPECT [24] build on this
hardware-in-the-loop approach.

This technique provides the highest fidelity emulation since
the emulator directly interacts with the physical hardware;
however, use of this technique is contingent on continuous
access to the hardware, which is not always possible since
hardware (like that used in avionics) may be difficult or im-
possible to obtain.
Full firmware rehosting. Full rehosting is a technique which
attempts to construct a fully featured, high-fidelity emulator
from a piece of firmware and auxillary information about the
SOC or firmware.

Firmadyne [7] is a platform for automated dynamic anal-
ysis of Linux-based embedded systems. Firmadyne takes
as input a piece of firmware running the Linux kernel, and
executes user-space code for the firmware, emulating the
common Linux peripherals. Similarly, Costin et al. [11, 12]
extract and rehost the embedded system’s filesystem in their
own analysis environment to analyze network-facing code.
Because the code of interest to an embedded system security
analyst is often the user-space, network-facing code, Firma-
dyne and Costin et al.’s tool are well-suited for this scenario.

Pretender [22] rehosts firmware by recording the interac-
tions between the physical hardware and the firmware. It then
uses a machine learning engine to learn a stateful model for
peripheral behavior and creates an emulator from this model.
Similar to Avatar, Pretender takes as input the firmware, and a
connection to the physical hardware, and creates an emulation
environment; however, unlike Avatar and related tools, Pre-
tender can fully migrate the firmware to a virtualized environ-
ment, and does not require persistent access to the hardware.

HALucinator [10] is a firmware rehosting tool that uses
hueristics to locate the code belonging to the hardware ab-
straction layer (a vendor-provided API for interacting with
the hardware) in the firmware and replaces it with manually
created handlers. HALucinator takes as input firmware, and
the HAL the firmware uses, and produces a fully featured
emulation environment for the firmware.

Previous rehosting techniques have relied on auxillary in-
formation to infer the behavior of the hardware environment.
While this results in a more complete emulator, this auxillary
information is not always available—most of our evaluation
subjects had none. Furthermore, security analysis is often
concerned with only a particular software component of the

firmware, (e.g., the network traffic or the file system code)
and may not need a fully featured emulator.

Partial rehosting. Partial rehosting, as opposed to full re-
hosting, attempts to create an emulator from the firmware
only, with no auxillary information about the peripherals.
However, the emulators produced by partial rehosting are not
complete—they are not guaranteed to implement all periph-
erals for the firmware, only what they can infer. This is the
point in the design space that Jetset occupies. There is one
other notable system that implements partial rehosting, P²IM.

P²IM [18] does both fuzzing and partial rehosting based on
the peripheral model that it infers from the fuzzing stage. It
takes as input the target firmware and its memory map, and
fuzzes the firmware code by channeling input from an off-
the-shelf fuzzer like AFL to the peripherals. It then analyzes
the device access patterns exercised during this fuzzing pass
to infer details about the MMIO interactions between the
firmware and peripheral devices, and executes the firmware
without crashing.

There are two key differences between P²IM’s fuzzing-
based approach, and Jetset’s directed symbolic execution-
based approach. The first deifference is that unlike P²IM,
Jetset is targeted—it is designed to ignore most paths through
the firmware to focus on a particular target piece of code,
which allows it boot deep into large pieces of firmware. While
Feng et al. showed P²IM’s approach is effective at fuzzing
peripheral handling code and emulating microcontroller code,
it is not clear whether it scales to larger firmware. Besides
evaluating against all of P²IM’s publicly available real-world
evaluation subjects, we also evaluated Jetset against four
complex pieces of firmware—one of our evaluation subjects,
the Raspberry Pi 2 is 450x LoC of any of P²IM’s evaluation
subjects. We attempted to evaluate P2IM on our 4 real-world
firmware samples. Unfortunately, the current version of P2IM
only supports Cortex-M MCUs and we were unable to run it
on any of our samples, including our Cortex-A7 and Cortex-
A8 firmware.

The second difference is that, while fuzzing-based ap-
proaches are efficient since they use lightweight executions,
they can have trouble bypassing complex checks. In Sec-
tion 6.5.3, we provide an example of a complex numerical
check that occurred when inferring the behavior of an FPGA
in one of our evaluation subjects. Jetset is able to handle com-
plex numerical checks, because it performs partial rehosting
using symbolic execution.

3 Jetset Overview
Jetset uses symbolic execution to infer how peripheral de-
vices must respond to reads from the firmware for execution
to progress toward the goal address. It uses this inferred
information to deduce and reproduce expected peripheral de-
vice functionality to boot firmware in an emulator such as
QEMU. This allows analysts to boot the system in an emula-
tor with only the firmware, and without the target’s hardware



or support for the peripheral devices in the emulator. To do
this, Jetset requires the following information about the target
embedded system.

• The executable code of the target, usually read out of pro-
gram flash or extracted from a firmware update provided
by a manufacturer.

• The memory layout of the target, specifying which re-
gions of the address space are mapped to program mem-
ory, RAM, and device I/O registers. This information can
be obtained from the datasheet of a single-chip system or
from a basic analysis of the executable code. Note that
Jetset does not need to know which devices are mapped
where, only the address range used for MMIO.

• The entry point address where execution begins. This is
often specified in the CPU datasheet.

• The program goal address that the analyst wants the pro-
gram to reach. For example, this can be the address of a
print instruction that reports a successful system boot.

There are two stages of Jetset operation: peripheral infer-
ence and peripheral synthesis. In the inference stage, Jetset
uses symbolic execution to infer expected device behavior.
Then, in the synthesis stage, the output of the inference stage
is used to create a device suitable for use in an emulator (e.g.,
QEMU).

3.1 Peripheral inference
In the peripheral inference stage, Jetset symbolically exe-
cutes the firmware to infer what values should be returned by
reads from device registers in order for execution to reach the
firmware’s goal address.

Symbolic execution is a general program analysis tech-
nique in which a program is executed while values of interest
are kept symbolic, that is, treated as if they could take any
value. In Jetset, input from devices is kept symbolic. When
a symbolic input–dependent branch instruction is processed,
both outcomes are explored. For example, given the state-
ment if x > 5 then a else b, both the path starting
with statement a in which x > 5 and the path starting with
statement b in which x≤ 5 will be explored.

3.1.1 Inferring device I/O constraints
Jetset executes the target code in a custom symbolic execu-
tion environment. During execution, all reads from MMIO
address space are symbolic, while the initial contents of flash
and memory are concrete. Each read from a MMIO address
returns a distinct symbolic variable; that is, two reads from
the same address result in two different symbolic values. Us-
ing symbolic execution, Jetset can explore all program paths
in the firmware that depend on device behavior. Jetset stops
when an execution path reaches the goal address, resulting in
a set of constraints on values read from device registers that
lead to this address.

3.1.2 Searching for the target
The purpose of symbolic execution in the peripheral inference
stage is to find an execution path that reaches the goal address
specified by the analyst. However, naive forward symbolic
execution on firmware of non-trivial size quickly becomes
impractical because of the large number of paths that need
to be explored. To remedy this, Jetset uses guided symbolic
execution to favor exploring the most promising paths first.
Specifically, Jetset uses the control flow graph (CFG) of the
target program to annotate each basic block with a distance to
the goal, calculated as the number of CFG edges between the
block in question and the block containing the goal address.
At a branch, Jetset chooses to explore the basic block with
the lower distance to the goal. A search path terminates either
when it reaches the goal, triggers a system reset, or enters an
infinite loop. To detect infinite loops, Jetset checks against
a set of simple infinite loop patterns at the CFG level (see
§4.4).

Static CFG generation cannot always recover indirect con-
trol flow transfers (e.g., indirect function calls from a function
pointer). Because of this, a path to the goal may not be visi-
ble in the generated CFG. In this case, Jetset explores paths
until it reaches an indirect jump, resolves the jump, and then
generates more of the CFG (see §5.1.3).

Jetset calculates a calling context sensitive distance func-
tion over the interprocedural CFG to guide its search (see
§4.2). A calling context sensitive distance function is one
that only includes paths that follow a valid call chain, i.e. all
calls that are returned from are returned to the correct loca-
tion. This distance function is defined to ensure that forward
progress in the firmware is being made, and to guide Jetset’s
search towards the most efficient path to the boot sequence.

While executing, the firmware may require interrupts to be
serviced to reach the target.

3.1.3 Injecting interrupts
Because booting the firmware may require interrupts, Jetset
periodically injects interrupts during the inference stage. For
example, the goal address for the Raspberry Pi firmware is in
a different kernel thread than the entry point, so a scheduler
interrupt is needed to reach the goal. From Jetset’s point
of view, this means that it needs to execute an interrupt ser-
vice routine (ISR) to make progress. Given infinite compute
resources, Jetset could explore every possible interrupt ei-
ther firing or not after each instruction. However, this is
impractical. Jetset exploits the fact that well-designed sys-
tems are not sensitive to the exact timing of interrupts and
that ISRs are written to handle spurious interrupts gracefully.
Jetset periodically injects interrupts during symbolic execu-
tion, so that each ISR is executed periodically during each
execution path. If the main execution thread happens to be
waiting for an ISR to update a variable, Jetset will eventu-
ally execute that ISR, and the thread can continue making
progress.



Once Jetset has reached the target (with or without inter-
rupts), it can create a synthetic peripheral model that can be
used in QEMU.

3.2 Peripheral synthesis
The result of the peripheral inference stage is a set of con-
straints on values read from peripherals needed for the
firmware to boot. Jetset then uses Z3 [16], the default SMT
solver used by angr, to find an instance satisfying these con-
straints, resulting in a set of concrete values that can be re-
turned in response to device reads during execution. This al-
lows Jetset to construct a light-weight, concrete device model,
rendering peripheral inference a one-time cost per device.
3.2.1 Synthesizing an emulator from I/O traces
In effect, the synthesis stage generates an I/O trace that is
sufficient to reach the goal in the emulator. The synthesized
trace is partitioned by I/O address, so there is a separate trace
for each MMIO address. When Jetset reaches the end of an
I/O trace for a particular address, any subsequent reads return
the last value in the trace. This allows Jetset to continue past
the goal address in emulation, but precludes any complex
interaction with the device after the trace has ended (see
Section 7). After the trace has ended, it is already past the
complexities of the initialization stage, and this model is
sufficient to carry out useful dynamic analysis tasks on the
target firmware (see §6).

The synthetic device also injects interrupts during emula-
tion.
3.2.2 Driving interrupts during emulation
The synthesized device injects interrupts in the same way
as during peripheral inference, ensuring that any necessary
ISRs are executed in emulation. Interrupt timing during ex-
ecution in an emulator does not need to precisely match the
timing during peripheral inference—if, during emulation, an
interrupt is fired one instruction later, this will not make a
difference in emulation.

4 Search Strategy
Firmware binaries are too complex to evaluate all possible
paths within them. Our interest, though, is in reaching a
particular security-critical point deep in the code. Jetset uses a
novel application of Tabu search [19] to find a path to the goal
address in the firmware. Tabu search is a search algorithm
that has been used for searching complex nonlinear search
spaces since the 1970’s [20]. Jetset uses Tabu search as it
allows it to encode domain specific information to improve
both path prioritization (Jetset uses a distance function based
on the firmware’s control flow graph) and backtracking (Jetset
uses specialized backtracking rules to avoid failure conditions
like hanging firmware).

4.1 Tabu search
Tabu Search is a variation of depth-first search guided by a
distance function—it remains on the same path, selecting the

1. call foo

2. call bar

2

3. call foo

3

4. ret

2

main (length = 7)

5. mem[0x100] = 1

6. eax = 2

1

7. ret

1

foo (length = 2)

8. ebx = mem[0x200]

9. ebx == 1

1

10. eax = 3

false; 1

11. eax = 2

true; 1

12. ret

1 1

bar (length = 3)

Figure 1: Context-sensitive distance from statement 5 (in first
foo call) to statement 7 (of second foo call).

closest option at each decision point, until hitting a termina-
tion condition. Tabu Search also encodes a Tabu List which
acts as a blocklist for known bad states, acting as a filter for
which states Jetset may backtrack to in the future. In particu-
lar, Jetset does not backtrack to states to a location—encoded
as a (pc, callstack) pair—that it has already visited. Tabu
Search can also encode details such as backtracking strategies
and termination conditions, as we elaborate on in Section 4.4.
Jetset’s search is guided by a context-sensitive distance func-
tion.

4.2 Context-sensitive distance
To ensure that Jetset continues to make forward progress to-
wards the goal address, Jetset uses a distance function to guide
its search. This distance function is context-sensitive [26]: it
takes into account that the distance between two instructions
in a program can depend on the calling contexts (i.e., the call-
stack) of the two instructions. Computing a context-sensitive
distance function is more complicated than computing a local
distance (i.e., the distance between two instructions in a single
function).

The local distance between two instructions is simply the
graph distance between the two instructions in the control flow
graph. For example, in Figure 1, the distance from statement
5 to statement 7 (both within foo) is 2. When computing local
distances, the edges for call instructions need to be weighted
based on the called function’s length—the distance between
the start of the called function and the nearest return of that
function. For example, in Figure 1, the distance from state-
ment 1 to statement 4 is not 3, but 7. This is because, when
executing a call instruction, it is not really one instruction be-
ing executed, but every instruction until the call returns. This
is further complicated, because the called function may itself
call other functions. Therefore, to compute local distances for
each function, Jetset first creates a callgraph of all functions
in the firmware, then computes local distances for functions
in topographical order. This ensures that when Jetset com-
putes local distances for a function, it has already computed



local distances for every function that function calls. But this
still only gives local distances—it does not provide distances
between instructions in different functions.

Computing the distances between instructions in different
functions is more complicated, because functions are often
called in more than one context and Jetset is only interested
in realizable paths—paths which follow a valid call-return
sequence. For example, in Figure 1, the distance between
statement 5 (in foo) and statement 4 (in main) depends on
foo’s calling context: if foo was called from statement 1,
then the distance is 7, if foo was called from statement 3,
then the distance is 2.

Jetset uses a context-sensitive distance function: it deter-
mines the distance between an instruction in one calling con-
text—a (pc, callstack) pair—to another instruction, in another
calling context. To compute this distance function, Jetset first
precomputes local distances for all functions. Then, Jetset
computes the distances between instructions in different func-
tions. To do this, Jetset takes advantage of the fact that all
paths between instructions can be broken up into a sequence
of returns, followed by a sequence of calls [26] (there will
never be an interleaved call and return, because then that
would be a local distance!). Nonlocal distances can therefore
be seperated into two distances: the callstack distance—the
distance along the sequence of returns up the callstack—and
the callchain distance—the distance along the sequence of
calls that lead to the goal address (or the goal address in a
specific calling context).

Jetset precomputes all local distances, but both the call-
stack and callchain distances are computed lazily from the
actual stack during execution (it is infeasible to precompute
all callstack and callchain distances). Jetset computes the
total context-sensitive distance as the sum of the callstack and
callchain distances.

Callstack distance. The callstack distance measures the dis-
tance from an instruction in one calling context to an in-
struction that can be reached by a sequence of returns (i.e.,
instructions in functions in the current callstack). To compute
the callstack distance, Jetset first computes the local distance
to the location of the closest return instruction. It continues
summing the distances to each return of each function recur-
sively up the call stack. It stops once it reaches a function that
can reach the target with a set of calls (i.e., a function that is
in the target’s callstack), as shown below.

1 # Calculate callstack distance
2 while function not in target_callstack:
3 distance += local_distance(cur, ret)
4 cur = function.returns_to
5 function = stack.next_function

For example, suppose Jetset wanted to reach statement 7
(in the second foo call) from statement 5 (in the first foo call).
The call stack distance would be 2, as that is the distance to

exit from foo to main, at which point statement 7 can be
reached by a set of calls.
Callchain distance. The callchain distance measures the dis-
tance from an instruction in one calling context to an instruc-
tion that can be reached by a sequence of calls. To compute
the callchain distance, Jetset first computes the local distance
to the nearest call instruction that leads to the target. It then
recursively sums the distance to each function call on the way
to the target, as shown below.

1 # Calculate callchain distance
2 while function != target_function:
3 call = target_callstack.closest_call
4 distance += local_distance(cur, call)
5 function = call.target
6 cur = function.entry

Suppose again that Jetset wanted to reach statement 7 (in
the second foo call) from statement 5 (in the first foo call).
The call chain distance would be 5: 3 to reach the second foo
call and 2 to descend into the foo call to reach statement 7.
Fallback distance function. In cases where the current in-
terprocedural control flow graph does not contain a path to
the goal address, Jetset relies on using the local distance to
the nearest return as a fallback distance function. The incre-
mental CFG generation improves the quality of the CFG over
time, so eventually the CFG will contain a path to the target.

4.3 Alternating decisions to aid exploration
Jetset’s distance function is only an approximation of the real
distance—it represents the graph distance on the control flow
graph, not the number of blocks that need to be executed
to reach the target. Using CFG distance as a heuristic is a
powerful technique for guiding execution, but it is only a
heuristic—there are situations in which the longer path is the
correct path. Therefore, Jetset needs to balance how often it
conforms to the distance heuristic, and how often it explores
choices that do not follow the heuristic. To do this, Jetset
uses a deterministic method to strike this balance between
exploring new choices and exploiting the heuristic. It uses an
alternation threshold n—every n times Jetset visits a location,
Jetset chooses a suboptimal decision. In practice, we find an
alternation threshold of three has the best performance.

4.4 Backtracking to avoid error states
Jetset’s search algorithm may guide it to a point in the pro-
gram where it becomes infeasible to reach the target and it
needs to terminate the current path and backtrack to a pre-
vious state. There are two different cases where this occurs.
The first case where Jetset backtracks is when a system re-
set occurs; it is unlikely that a system reset takes place in
a correct boot sequence, and backtracking on system resets
allows Jetset to avoid boot loops. The second case where
Jetset backtracks is when Jetset enters a statically-detectable
infinite loop.



A statically-detectable infinite loop is one where, even if all
paths in it were satisfiable, there would still be no exit. These
statically detectable infinite loops are efficiently detectable
on a control flow graph; for example, there is no way to
escape a single basic block that unconditionally branches
onto itself. Jetset marks all such points with breakpoints,
and upon reaching one, it backtracks. While other work has
attempted to efficiently detect infinite loops at runtime [5],
this is not a well studied problem at the binary level, and all
infinite loops in the boot sequences we have encountered have
been statically detectable.

When Jetset backtracks, it backtracks to the last untaken
symbolic branch that is closest to the target. If multiple
branch-decisions are equally close to the target, than the most
recent one is selected. Decisions are identified in a context
sensitive manner, so if a particular decision has been chosen
under one calling context but not another, then Jetset may still
backtrack to that decision under the second calling context.

5 Jetset Implementation
Jetset uses symbolic execution to infer the expected behavior
of peripheral devices used by firmware and then emulates
this firmware using the resulting synthetic devices. To do
symbolic execution, Jetset uses angr [31] and the Z3 SMT
solver [16]. To emulate the firmware, Jetset uses QEMU [4].
We modified angr by adding a lifter for m68k/Coldfire as
well as adding additional support for privileged x86 code
and x86 memory segmentation. We implemented Jetset in
5500 lines of Python code, including changes to angr, and
2000 lines of C. The remainder of this section covers the in-
depth implementation details of Jetset’s symbolic execution
environment and peripheral synthesis.

5.1 Symbolic execution environment
Angr is a symbolic execution engine and general binary anal-
ysis platform which provides binary lifting, static analysis,
and symbolic execution. We replaced angr’s builtin dynamic
symbolic execution system with a custom system based on
QEMU, allowing Jetset’s symbolic execution to be more
closely coupled with the underlying hardware emulation envi-
ronment. Jetset uses angr to generate and analyze the control
flow graph, and to manage constraints for symbolic execution.

5.1.1 Whole-system symbolic execution
Jetset does whole-system symbolic execution [9]—it symboli-
cally executes inside of QEMU’s full system emulation mode
to closely couple the symbolic execution and the hardware
environment. Executing directly inside QEMU was also criti-
cal to performance. Another benefit of this is that Jetset does
not need to encode any complex semantics of threading or in-
terrupts since it uses QEMU’s CPU model, which models the
delivery of hardware interrupts. Jetset only needs to invoke
QEMU’s builtin interrupt injection mechanisms.

5.1.2 Interrupt injection

To reach the goal address within a piece of firmware, Jetset
may need to invoke an interrupt service routine (ISR). For
example, a flag in RAM may need to be set by a particular ISR
to proceed further in the boot sequence. Without injecting the
interrupt, the main execution thread would otherwise busy
loop, waiting for the flag to change,2 but by injecting the
interrupt, the booting process can proceed.

During symbolic execution, Jetset periodically injects in-
terrupts. Spurious interrupts should not cause erroneous be-
havior in well designed interrupt handling code, so Jetset
errs on the side of overapproximation of fired interrupts (i.e.,
firing more interrupts than are likely to be used in the actual
boot sequence). To prevent the boot sequence from hanging
while waiting for an interrupt, Jetset injects interrupts in a
cycle from 0x1 to the maximum number of interrupts on the
architecture. Jetset uses the QEMU builtin qemu_set_irq
function to trigger interrupts.

5.1.3 Incremental CFG construction

Jetset relies on its distance function to guide execution, but it
is not always able to statically generate a complete interproce-
dural control flow graph. This may occur if, for example, the
goal address is on the other side of a virtual function call or
an x86 hardware task switch. When the CFG is incomplete,
it causes Jetset’s distance function to be imperfect, as it may
miss shorter paths, or not find a path to the target at all.

To efficiently search for the goal address in the presence
of these obstacles, Jetset uses incremental CFG generation.
If, in the course of symbolic execution, Jetset encounters a
symbolic branch in a function that is not in the CFG, it tra-
verses the call stack, adding each function it has not yet seen,
and adding edges to the callgraph showing the relationships
between these functions. Jetset then recalculates its distance
functions over the new control flow graph, an inexpensive
computation.

This allows Jetset to improve the accuracy of its distance
function over the course of its search. Incremental CFG
generation was integral to reaching the goal address in each
of our experiments. Checking at each instruction whether
Jetset’s current location is in the callgraph would be overly
expensive, so Jetset only checks for inclusion in the CFG
and updates the CFG at each point in which it is making
a decision about a symbolic fork. This greatly reduces the
cost of incremental CFG generation, and does not reduce the
efficacy, as symbolic branches are the only times Jetset uses
the distance function.

Even if Jetset can make full use of the distance function
and make all the right decisions, symbolic variables (and the
constraints on them), can quickly get prohibitively numerous.

2Since the flag is in RAM, Jetset cannot infer that the flag should be
symbolic.



5.1.4 Optimizing SMT constraints
Jetset uses two optimizations to reduce the number of sym-
bolic variables it has to process during symbolic execution:
constraint independence optimization and decision finaliza-
tion.

Jetset uses constraint independence optimization [6] to
reduce the number of constraints used when checking satisfi-
ability of paths during symbolic execution. Before checking
the satisfiability of the current path, Jetset only submits the
constraints used in the current symbolic branch to the SMT
solver, vastly reducing the number of symbolic variables pro-
cessed each branch. Jetset records constraint independence
sets—which symbolic variables are dependent on what other
symbolic variables—efficiently with a disjoint set data struc-
ture.

For very complex firmware (like the Raspberry Pi 2) Jetset
also uses decision finalization—after branching on a sym-
bolic value at the same address n times without crashing,
Jetset stops symbolically handling that variable, and makes it
concrete before the synthesis stage. In general, Jetset keeps
all device reads fully symbolic, but after a sufficient number
of checks (in Jetset’s case, 200) on a device read at the same
location without crashing, it is unlikely that returning the
same value would cause the firmware to crash. By concretiz-
ing the device read early, decision finalization reduces the
number of symbolic variables needed for complex firmware.

5.2 Peripheral synthesis
The output on the inference stage is a set of constraints on
values read from device registers along a path from the entry
point to the goal. In the synthesis stage, Jetset generates a
synthetic device that satisfies these constraints. In response
to each device read, the device returns the concrete value that
will guide the execution down the path from the entry point to
the goal. When this device is used with a concrete emulator
(like an unmodified QEMU), the firmware will boot to the
goal address.

5.2.1 I/O synthesis
Memory-mapped I/O is the primary mechanism by which
firmware interacts with hardware devices. Firmware often
makes decisions based on the results of this I/O. For example,
during the hardware initialization phase of the firmware, the
firmware checks if devices are present and working properly
by writing to the device and expecting a particular status flag
to be returned when reading from the device. To emulate
these reads, Jetset treats memory mapped I/O regions as sym-
bolic data. MMIO regions differ from standard symbolic
memory locations, though, because two consecutive reads
from a memory mapped I/O region may not return the same
value. For example, firmware may read from a timer data
register, then continue to read until the value read from the
register changes. Jetset models this behavior by having each
read return a different symbolic variable.

Jetset tracks the constraints placed on values read from
memory mapped I/O regions so that when it generates a
synthetic device, it can ensure that the synthesized values
conform to these constraints such that the path discovered
during symbolic execution is taken during emulation.

Once Jetset finds a path that boots the firmware, it no longer
needs to perform any inference. It then generates a device
emulator that can be used with an unmodified QEMU instance
to avoid complexity during subsequent dynamic analyses
and to avoid the overhead that symbolic execution incurs.
To generate the device emulator, Jetset starts by extracting
the symbolic device I/O trace from the successfully booting
program path. It then concretizes the values of all I/O reads
under the set of constraints that led to successfully finding
the boot address. This concrete I/O trace is partitioned by
memory address to create by-address I/O traces. These traces
are treated as read queues, so that when the synthetic device
is read from, the appropriate read queue is accessed, and the
synthetic device responds with that value. If the queue is
emptied (i.e., execution is beyond the intended boot address),
the device responds with the last value of the queue.

Jetset then outputs a C file that implements this device
read handler as a properly formatted QEMU device emulator
file. This device emulator is then added as a device to an
unmodified distribution of QEMU. When QEMU runs the
firmware with this device, it will boot to the intended boot
address, at which point we can perform dynamic analysis.
The device models Jetset produces only replay one possible
boot path, and, after that, replay the last MMIO value that
allowed the firmware to progress for the address being read
from. The intuition behind this model is that each MMIO
address is likely being used for one purpose, for example,
a status ready flag, or a configuration variable. In the first
case, we always want to return the status flag that allows the
firmware to stop polling, which should be the value returned
by this simple device model. In the second case, configuration
values are not often changed after initial configuration, and if
they are, they initial configuration is still valid and does not
affect the behavior of the portion of firmware under analysis.
Therefore the simple model continues to return the correct
configuration variable as it returns the last known value of the
configuration variable that satisfies the constraints of the boot
path. In Section 6, we show our synthesized model faithfully
emulates the systems under test.

But even if the synthesized device emulates all I/O cor-
rectly, it still needs to reproduce the interrupts used in the
synthesis stage as well.

5.2.2 Interrupt synthesis
Jetset injects interrupts during concrete emulation to ensure
that the synthesized emulator follows the same path to the
program goal as the Inference stage. To follow the same path
as closely as possible, it injects interrupts using the same in-
terrupt strategy as during the Inference stage, that is, it cycles
through all possible interrupts in the same order. Although



this does not guarantee that the interrupts are injected in the
exact same location, i.e., between the same two instructions,
it does preserve the order and relative frequency of interrupts.
We rely on the same assumption made during the Inference
stage—that interrupt handling code does not rely on highly
precise timing of interrupts, and that it should handle spurious
interrupts gracefully. We found this assumption to hold when
we evaluated Jetset on real firmware targets.

6 Evaluation
To evaluate Jetset, we use it to infer peripherals for thirteen
embedded systems. Nine of these systems are systems evalu-
ated by the P²IM [18], and four are original targets (Table 1).
We then synthesize the peripherals and use them to boot the
target system firmware in QEMU. We chose the nine P²IM
subjects since they represent a wide range of use cases, and
use a variety of MCUs, peripherals, and operating systems.
We chose the CMU-900 and SEL-751 because their security
analysis was of independent interest to us. The other two, a
Raspberry Pi 2 and BeagleBoard-xM, represent widely used
SOCs. In the case of the Raspberry Pi 2, it also allowed us to
compare the fidelity of our emulation to the actual hardware
system.

Our evaluation aims to determine whether using symbolic
execution to infer expected peripheral device behavior works
well enough to be useful. We do this in two ways. First, we
synthesize the inferred peripheral device models and instanti-
ate them in QEMU. We then execute the system code in this
QEMU instance (with inferred device models) to determine
whether the system will boot to the goal address we targeted
in the Inference stage. This tells us that the synthesized de-
vices mimic the expected peripherals well enough for the
system to get to the intended target address in the code, at
which point it is ready for further dynamic analysis.

For two of our targets, the CMU-900 and Raspberry Pi
2, we go further and use the booted system to fuzz-test the
system call interface of both operating systems, VRTX and
Linux, respectively. This end-to-end test allows us to com-
pare the behavior of the emulated system to a reference, to
determine if the emulated system is a good stand-in for the
original. For the CMU-900, our reference is an instance of
the system running in QEMU using models of the peripher-
als based on painstaking manual reverse-engineering. For
the Raspberry Pi 2, we do the same fuzz-testing using the
hardware board itself, and confirm that the results of system
call fuzzing are the same in both. Although it is not the
goal of this work to identify specific vulnerabilities, we did
find a number of crashes in the CMU-900’s operating sys-
tem kernel. One of these crashes was manually adapted into
a privilege escalation exploit. Because our testing targeted
the system call interface, absent an additional vulnerability,
this bug is not remotely exploitable. We did not identify any
exploitable privilege escalation vulnerabilities in the Linux
kernel (nor did we expect to find any); instead, our tests con-

firmed that both systems responded to fuzzer input in the
same way.

We begin our evaluation by describing our methodology
in Section 6.1. In Sections 6.2 through 6.5, we describe
the results for our four original targets in detail. Finally, in
Section 6.6, we describe our results for the P²IM targets.

6.1 Methodology
To evaluate Jetset’s performance on each of our targets, we
begin by collecting the necessary information about each tar-
get. As described in Section 3, this information consists of
the executable code of the system, its memory layout, the
entry point where execution is to start, and the goal program
address that we would like to reach. Using the information
above, we configured and ran Jetset to infer peripheral device
behavior and then used the QEMU device synthesis module
of Jetset to generate executable C models of the devices iden-
tified. We ran all experiments on an Intel Xeon Silver 4208,
2.10 GHz, 32-core server running Ubuntu 18.04.3 LTS. We
then used these synthetic peripheral device models to boot
the firmware image in QEMU and ensured they reached the
expected goal.

Table 1 reports the statistics about each stage for our four
original targets. References to blocks in the table (e.g., Blocks
executed on path) are to program basic blocks, the basic unit
of translation in QEMU. Each target is discussed in detail
below.

6.2 Target: Raspberry Pi 2
The Raspberry Pi 2 is a single-board computer based
on the Broadcom BCM2836 system-on-a-chip (SoC). The
BCM2836 has a quad-core ARM Cortex-A7 processor, a
Broadcom VideoCore IV 3D GPU [28, 29], and numerous
peripherals. The Raspberry Pi 2 runs a modified Linux kernel
that includes binary drivers for some of the devices on the
BCM2836 SoC. On the Raspberry Pi 2 hardware, the first
stage bootloader is executed by the GPU, which loads a de-
vice tree blob3 and the Linux kernel into memory, and then
transfers control to the kernel. (There is no publicly-available
emulator for the VideoCore GPU, and the GPU boot code is
provided in binary form only.)

The current version of QEMU supports the Raspberry Pi
2, implementing 13 of the 28 peripherals defined in device
tree blob file included with the official Linux kernel from
the Raspberry Pi Foundation. The remaining 15 devices
are unimplemented; reads from their device registers always
return 0. In addition, QEMU does not emulate the VideoCore
boot: instead, it loads the device tree block and kernel into
the RAM device directly, and then transfers control directly
to the kernel. In our evaluation, we use both the hardware
Raspberry Pi 2 and the QEMU-emulated Raspberry Pi 2 to
test the fidelity of our emulation.

3The device tree blob is a compact description of the hardware configura-
tion used by the operating system kernel to locate peripheral devices [17].



Table 1: Evaluation targets and summary statistics.

Raspberry Pi 2 BeagleBoard-xM CMU-900 SEL-751

CPU/SoC Broadcom BCM2836 (ARM) TI DM3730 (ARM) AMD Am486 (i386) NXP MCF54455 (ColdFire)
OS/SW Linux 4.19.y X-Loader VRTX-32 G5.1.5.0
Peripheral inference

Wall-clock time 6m43s 5m15s 5m20s 2h34m51s
Blocks in code base 238,792 872 55,016 141,750
Total blocks executed 81,194,393 20,198,824 53,143,508 3,351,484,857
Blocks executed on path 81,194,393 20,198,824 27,517,932 3,351,484,857
Unique blocks executed 43,157 484 776 11,364
Unique blocks executed on path 43,157 484 731 11,364
MMIO writes (ignored) on path 84,060 938 1,308 32,480
MMIO reads (symbolic) on path 83,857 3,633 242 704
MMIO write addresses on path 40 244 13 68
MMIO read addresses on path 37 61 5 26
Devices accessed 6 11 5 5

Peripheral synthesis
Wall-clock time 3.16s 5.64s 0.018s 5.61s
Total Symbolic Variables 1,384 3,633 242 704
Total Constraints 5,226 8,353 756 11,142
Constraints per variable 3.78 2.30 3.12 15.83
Average trace length 37.4 59.56 48.4 27.08
Median trace length 1 3 5 2
Maximum trace length 1076 2,770 215 343

Emulator execution to goal
Wall-clock time 8s 101ms 289ms 1m1s
Total blocks executed 81,454,594 20,198,656 27,519,080 3,351,502,947
Unique blocks executed 43,255 483 731 11,364
MMIO writes (ignored) 83,915 938 1,882 32,480
MMIO reads 83,857 3,633 242 704
MMIO write addresses 43 244 13 68
MMIO read addresses 27 61 5 26
Devices accessed 6 11 5 5

6.2.1 Raspberry Pi 2 configuration

We took the official QEMU Raspberry Pi 2 configuration as
our starting point. Specifically, we used the same MMIO
address ranges as the official QEMU configuration. Of the 13
Raspberry Pi 2 peripherals implemented by QEMU, we kept
three devices that implement part of the VideoCore IV, leaving
the remaining to be inferred by Jetset. The VideoCore IV is
used to perform DMA to RAM, and we do not currently
attempt to infer DMA behavior. Generally, targets that rely
on DMA writes to RAM would need support for the DMA
controller in the emulator. Our target code was an unmodified
Raspberry Pi 2 kernel with a stub init process (instead of the
original initramfs), which we used to drive our kernel system
call fuzzing.

We chose the run_init_process function as our goal
program address. This function is invoked to transfer control
to the init process for the first time. Program execution
reaching this function indicates that the kernel boot sequence
has finished.

6.2.2 Inferring the Raspberry Pi 2 peripherals

The peripheral inference stage completed in under 7 minutes
after executing 81.1 million basic blocks. Table 1 summarizes
this, and other parts, of the evaluation. Jetset did not backtrack
during execution (total blocks executed equal blocks executed
on path). This is because our distance function (Section 4.2)
avoids execution paths that would result in backtracking (i.e.
an infinite loop or halt). This does not mean that Jetset finds
the shortest possible path to the goal; rather, the distance
function helps it avoid terminating paths.

Table 1 also shows that the number of blocks executed is
over three orders of magnitude greater than the total number
of blocks because of loops that execute a set of blocks repeat-
edly. In most cases, these loops operate on concrete values
only, allowing QEMU to execute them efficiently.

In all, on the path from entry point to goal, Jetset saw
84,060 MMIO writes to 40 distinct write addresses and 83,857
MMIO reads from 37 distinct read addresses, covering 6 of
the 28 devices defined in the device tree blob.



6.2.3 Synthesizing the Raspberry Pi 2 peripherals
The 83,857 MMIO reads together introduced 1,384 symbolic
variables, with an average of 5,226 constraints per variable.
This disparity between the number of reads and number of
symbolic variables is caused by Jetset’s decision finaliza-
tion optimization (see Section 5.1.4). Decision finalization
was effective in this case because there were many repeated
reads from the same addresses in the Raspberry Pi 2 boot
process—one example being reads from the serial interface’s
status register.

Jetset synthesized the synthetic device in less than four
seconds. The median trace length was 1, whereas the longest
was 1076 values from a UART status register. Table 3 (in the
Appendix) shows part of the synthesized I/O traces.

The Raspberry Pi 2 kernel interacts with several devices,
such as the random number generator and custom SD card
host controller, for which no public documentation exists.
Nevertheless, Jetset was able to infer, from the driver code
that interacts with these devices, what values these otherwise
opaque devices need to produce in order for the system to
boot.

6.2.4 Emulating the Raspberry Pi 2
We configured QEMU to use our synthesized peripherals
and booted the same kernel used in the inference stage. The
kernel reached the run_init_process function in 8 seconds.
Table 1 summarizes the statistics of emulator execution using
synthetic devices.

One significant difference between the execution trace from
the peripheral inference stage and execution in the emulator
with synthesized devices was in the behavior of the SD host
controller. Specifically, slower inference-stage execution led
to controller command timeout, resulting in an error message
and a register dump. However, during emulated execution
with synthetic devices, the SD host controller initialized with-
out a command timeout. Jetset is resilient to timing differ-
ences because Jetset partitions I/O traces by address. Thus,
the relative order of reads from the same MMIO address will
remain the same, even if peripheral devices are accessed in a
different order during inference and emulation.

Nevertheless, while in this case this timing difference did
not prevent the system from booting, such divergence is un-
desirable, as it may take the emulated execution along a path
that ultimately fails. We are currently investigating ways
of ensuring tighter timekeeping accuracy between inference
and emulation to ensure that the kind of timing differences
observed above are less likely to occur.

6.2.5 Further dynamic analysis on the Raspberry Pi 2
With the Raspberry Pi 2, we have both official QEMU sup-
port for the target and the target hardware, which allows us
to compare the behavior of QEMU using our synthesized pe-
ripherals against these two references. After reaching the goal
(entry into the run_init_process function), we continued
execution and used our stub init process to fuzz the kernel

system call interface. Fuzzing entails generating random in-
puts to an interface to elicit unusual, potentially exploitable,
behavior. System call fuzzing has been used to find hundreds
of bugs and vulnerabilities in commonly used software [36].
We used the AFL fuzzer [35], extended to allow fuzzing I/O
peripherals, function parameters, and interrupts. Our fuzzing
targeted the Linux system call interface. However, because
the Linux kernel is used widely, we did not expect our test-
ing to identify new vulnerabilities in its system call interface.
Instead, our goal was to determine whether our synthesized
configuration behaves the same way: for all three implemen-
tations, we monitored the response of the Linux kernel to
each system call and recorded which of the following four
observable behaviors resulted:

• Kernel “oops” or panic. Both indicate a kernel fault,
pointing to a potentially exploitable bug. A kernel “oops”
does not halt the system, while a panic does.

• Process killed. The kernel kills the process issuing the
system call. In our configuration, the only process is the
init process, leading to a kernel panic with a unique error
message. Under normal circumstances process death
would not result in a panic.

• System call return. The kernel returns to the calling
process. We recover any set errno and return values.

In our experiment, we issued 1,571,576 distinct system
calls from our init process stub to the Linux kernel running
in QEMU with our synthetic devices, resulting in 123,198
unique codepaths. Of these, none resulted in a kernel “oops”
or kernel panic. 51,638 resulted in the kernel killing the init
process, and 71,560 in the system call returning to our user
process. We then carried out the same experiment (using the
same exact system calls) using the official QEMU Raspberry
Pi 2 configuration with manually-implemented devices. In
all 123,198 cases, we observed the same behavior in both the
synthetic and manually-implemented configurations, down
to fuzzing paths discovered, error stack traces, errno values,
and system call return values.

To compare our (synthetic) implementation against the real
hardware, we selected a random sample of 14,661 test cases.
We then booted the Raspberry Pi 2 kernel on the target board
and used a custom init process to read system call parameters
from a serial port, issue the system call, wait three seconds,
and then reboot the system. Using this interface, we issued
14,661 system calls on the target hardware. If the system
call returned, our init process printed errno and the return
value to the serial console. Otherwise, we relied on kernel
serial console output to determine whether the init process
was killed or whether the kernel encountered a fault (“oops”
or panic). We observed the same behavior on the physical
hardware as in the emulator with synthetic devices.



6.3 Target: BeagleBoard-xM
The BeagleBoard-xM is a single-board computer based on
the Texas Instruments DM3730 SoC [3]. The DM3730 has an
ARM Cortex-A8 processor, a DSP processor, a graphics accel-
erator, and numerous peripherals. The BeagleBoard-xM runs
a modified version of the Linux kernel that includes binary-
only drivers for the devices on the SoC. Linaro Foundation
also provides a QEMU configuration for the BeagleBoard-xM
with support for 25 of the 35 peripherals defined by the Tech-
nical Reference Manual [32]. The Beagleboard architecture is
kernel independent—running the emulated device in QEMU
does not require specifying an operating system image.

As our target, we chose X-Loader,4 the first-stage boot-
loader on the BeagleBoard-xM, which, in typical usage, is
responsible for loading the second-stage bootloader from
the SD card. Evaluating the full Linux kernel boot on the
BeagleBoard-xM would have required either enabling support
for the SD host controller in QEMU to allow the bootloader to
load second-stage bootloader and continue the boot sequence,
or implementing the direct boot mechanism used by QEMU
for the Raspberry Pi 2. Because the BeagleBoard-xM is not
of independent interest to us as a target, we chose to target
the first-stage bootloader only.

6.3.1 BeagleBoard-xM configuration
We configured QEMU for the ARM 32-bit architecture and
defined the program memory, RAM, and MMIO regions as
defined in the OMAP35x Technical Reference Manual [32].
We do not include any of the peripherals defined by the man-
ually implemented QEMU configuration. We reused the code
provided by Linaro to initialize the CPU and attach RAM
memory regions. We chose program address 0x80008000 as
our goal, which is the entry point to the second-stage boot-
loader.

6.3.2 Inferring the BeagleBoard-xM peripherals
In normal use, X-Loader attempts to find a device from which
it should load the subsequent-stage bootloader. In particular,
it checks for data from the boot sector of the SD card, in nand
flash, and via the UART serial port. During this process, it
probes 11 peripherals (Table 1) and executes over 20 million
program basic blocks, despite the small code base (872 basic
blocks). In all, on the path from entry point to goal, Jetset saw
938 MMIO writes to 244 distinct write addresses, the largest
number of writes and number of distinct addresses of our four
evaluation targets, covering 11 of the 35 devices defined in
the device tree blob.

6.3.3 Synthesizing the BeagleBoard-xM peripherals
The 3,633 MMIO reads each introduced a symbolic variable,
with and average 8,353 constraints per variable. Jetset then
synthesized a distinct I/O trace for each of the MMIO read
addresses in less than 6 seconds. The shortest trace was a
single value, while the longest was 2,770 values from a UART

4https://github.com/joelagnel/x-loader

control register. The path chosen during the inference stage
directs the bootloader to boot from the serial port. Jetset
infers a fragment of the Kermit file transfer protocol [14] that
causes X-Loader to proceed to boot after receiving 0 bytes of
the payload.

6.3.4 Emulating the BeagleBoard-xM
We configured QEMU to use our synthesized peripherals and
ran X-Loader, as in the inference stage. X-Loader reached the
goal address function in 29 seconds. The emulator crashed
after reaching our desired boot address while attempting to
perform a serial boot. After reading data from serial and
writing it to RAM, the firmware attempted to jump to this
“code” loaded from our synthetic device. This resulted in
a crash, since Jetset has no method to generate valid ARM
assembly and providing it to the serial reads.

6.4 Target: CMU-900
The Collins Aerospace CMU-900 is an electronic system used
on many Boeing 737 aircraft. It is responsible for handling
digital communications between the aircraft and ground sta-
tions. The primary processor of the CMU-900 is the AMD
Am486 [2], an Intel 486-compatible processor. The CMU-
900 peripherals are implemented as discrete ICs (the Am486
is only the CPU) as well as a Intel 386-based I/O processor
board. The Am486 accesses some of these peripherals using
port-mapped I/O and some using MMIO. For the sake of
brevity, we refer to both as MMIO. We extracted the flash
memory image from the flash ICs. We reverse-engineered
part of the code to determine the coarse memory layout, that
is, which address ranges are mapped to flash, RAM, and
MMIO. This was facilitated by the designers’ choice to use
the x86 memory segmentation system, allowing us to recover
the necessary address ranges from the global descriptor table
set up early in the boot process. Based on the strings found in
the flash image, we determined that the system was running
VRTX-32, a real-time operating system. In addition to the
OS kernel, we identified ten user-space tasks that implement
application functionality.

6.4.1 CMU-900 configuration
We configured QEMU to emulate a 486 processor with the
memory layout, as noted above. The entry point into the
code was the default entry point for the 486, namely address
0xffffff00. As our goal, we chose the first system call in
task 1 (later, we will use this to fuzz the VRTX-32 system
call interface). We did not define any peripherals in QEMU.

6.4.2 Inferring the CMU-900 peripherals
Peripheral inference on the CMU-900 took under six minutes
after executing 53 million basic blocks. The CMU-900 re-
quired extensive backtracking because the panic function in
the CMU-900 can return (when called with a non-fatal error
argument) but enters an infinite loop when called with a fatal
error argument.



In all, on the path from entry point to goal, Jetset saw 1,308
MMIO writes to 13 distinct write addresses and 242 MMIO
reads from 5 distinct read addresses, covering 5 devices. With
the exception of a single 32-bit read, all I/O on the chosen
path was port-mapped.

6.4.3 Synthesizing the CMU-900 peripherals
The 242 MMIO reads each introduced a symbolic variable,
with an average of 3.12 constraints per variable. Jetset then
synthesized a distinct I/O trace for each of the MMIO read
addresses in less than six seconds; Table 4 (in the Appendix)
shows the synthesized I/O traces. Based on the values read
and written to device registers and an examination of the
physical board, we were able to determine that the peripherals
were a Z85C30 serial controller at 0x2000, a DS1685 at
0x3000, the I/O processor board at 0x5000; we were unable
to determine what device was at 0x6000. The board also
has a programmable interrupt controller and programmable
interval timer, however the operating system only writes to
their registers during the boot sequence, so Jetset did not need
to infer any values read from them.

6.4.4 Emulating the CMU-900
We configured QEMU to use our synthesized peripherals and
proceeded to boot the same firmware image, reaching the goal
in less than a second. The CMU-900 executed 27,519,080
blocks during emulation, 1148 blocks more blocks than dur-
ing peripheral inference. This was caused by interrupt injec-
tion timing differing slightly between code execution during
the inference stage and in emulation.

After reaching the CMU-900 goal address, the emulator
continues to execute without crashing, looping through active
tasks in the scheduler.

6.4.5 Further dynamic analysis on the CMU-900
QEMU implements four of the peripheral devices used by the
CMU-900 (the real-time clock, interrupt controller, interval
timer, and serial controller). We created a custom QEMU
configuration mapping these devices at addresses expected
by the code, which allowed us to compare the behavior of
the emulated system with our synthetic devices against a
QEMU configured with their full implementation. As with
the Raspberry Pi 2, we compared the behavior of the two
systems by issuing system calls from unprivileged task 1.
Specifically, we stop execution immediately before task 1
issues the first system call, and set the contents of registers
using values generated by AFL [35].

AFL found 2963 unique crash code paths during 200 hours
of fuzzing. To compare the behavior of our two QEMU
implementations (synthetic and manual), we compared the
debugging console output produced by the CMU-900.5 In
the case of a successful system call return, the CMU-900
continues with its normal unprivileged task startup sequence.

5 We would prefer to compare the synthetic device QEMU instance to the
actual hardware. However, unlike the Raspberry Pi 2, we desoldered chips
from the CMU to extract firmware, making the device inoperable.

In the event of a protection violation, the CMU-900 prints a
wealth of debugging information, which we use to determine
whether the two configurations behaved similarly.

Of the 2963 execution paths discovered by fuzzing, 2884
(97.3%) code paths exhibited identical behavior. Another 36
(1.2%) had the same outcome, but differed in the values in
some of the registers. The remaining 43 (1.5%) also had the
same outcome, but differed more extensively in the output
generated.

6.4.6 Privilege escalation
Manual analysis of the 2963 execution paths led to the discov-
ery of a privilege escalation vulnerability. The vulnerability
occurs because a single byte can be “leaked” from unprivi-
leged code into the offset of a call instruction in the VRTX
kernel. One of the 256 potential values for this byte results
in the call targeting the middle of a function. From here, a
Return-Oriented Program (ROP) chain can be used to modify
the global descriptor table (GDT). A few instructions later,
the GDT modification causes the kernel protection error han-
dler to fire. However, the GDT modification changes the base
address of the data and stack segment used by the handler so
they overlap with an unprivileged data segment. The handler
includes a far call whose address is dependent upon a read
from the corrupted data segment. A malicious address can be
given to this far call, leading to a second ROP chain which
further modifies the GDT. This ROP chain changes the ad-
dress range limits for privileged code and transfers control to
unprivileged, writable memory while remaining in processor
ring 0.

Because we destructively disassembled the CMU to extract
the firmware on which we performed this emulated analysis,
it was not possible to use it for validation. However, we were
able to validate the exploit on another CMU-900 (one with a
slightly different part number and memory layout) after some
minimal adaption. In particular, due to small changes in the
VRTX kernel between device versions, the exploit’s control
transfer required supplying one ROP gadget address via a
segment rather than a data register and changing some gadget
offsets.6

To our knowledge, none of the discovered crashes can be
triggered remotely. Thus, taking advantage of these crashes
would require require carefully constructed application code
to already be present and running on CMU. As well, the CMU
is not directly involved in flight control and is not considered
a safety critical system. Nevertheless, in an abundance of
caution, we have disclosed this issue to Collins Aerospace.
We have worked closely with the company and have provided
sufficient technical detail to replicate our findings and incor-
porate this information into their own internal risk and safety
assessments.

6In addition, we also needed to develop a loading and bootstrap capability
to introduce our software into the physical CMU, but that had been developed
independently as part of a previous project [13].



6.5 Target: SEL-751
The Schweitzer Engineering Laboratories SEL-751 feeder
protection relay is used to protect power grid systems. It
consists of several boards plugged into a backplane. The
main processor is the MCF54455, a 32-bit microprocessor
implementing the ColdFire ISA, a derivative of the Motorola
68000. The MCF54455 includes a DMA controller and sev-
eral peripherals on-chip. In addition, the SEL-751 also has an
Altera Cyclone III FPGA on one of the boards plugged into
the backplane.

6.5.1 SEL-751 configuration
QEMU already has support for the ColdFire ISA and re-
quired minimal changes to support our processor variant.
We configured QEMU using the memory layout specified in
the MCF54455 Reference Manual [21], designating address
range 0xfc000000–0xfc100000 for MMIO. In addition to
the on-board peripherals, we determined (through reverse-
engineering) that the FPGA was mapped to 0x30000000–
0x30010000. We also added support the ColdFire architec-
ture to angr, which did not have support for ColdFire or its
predecessor, the Motorola 68000.

We bypassed the bootloader and started execution at the
entry point to the operating system. We set our goal to the
first point at which the timer interrupts were enabled, which
enables the schedule to switch to other tasks.

6.5.2 Inferring the SEL-751 peripherals
As shown in Table 1, peripheral inference on the SEL-751
took more than 2.5 hours, considerably longer than on other
targets. Our search strategy led execution down a path
which, while not requiring backtracking, engaged in a time-
consuming memory operation with little impact on synthesis.
In all, the SEL-751 read the registers of the FlexBus controller,
the Ethernet controller, the I2C communication interface, and
the GPIO system.

6.5.3 Synthesizing the SEL-751 peripherals
The synthesis stage took 6 seconds to synthesize the periph-
erals for the SEL-751, emulating device reads from 26 ad-
dresses. Table 5 (in the Appendix) shows part of the syn-
thesized I/O traces. The SEL-751 had an average of 15.83
constraints per variable, higher than the other targets which
ranged from 2.30 on the BeagleBoard-xM to 3.78 on the
Raspberry Pi 2. Complex operations on values read from the
FPGA were the reason for the larger number of constraints.

Jetset’s analysis of the SEL-751 included the inference of
five 32-bit FPGA reads in a range of 995≤ x< 10,000, where
x is a linear translation of the read value. During synthesis,
Jetset’s SMT solver was able to quickly find the correct input
values from the collected constraints (Table 1). Performing
this inference via fuzzing where hardware read values are
picked uniformly at random would have a success probability
of approximately 2−94.

Table 2: P²IM targets. These targets span three different
operating systems and four different SOCs.

Target SOC OS

Robot STM32F103RB Bare Metal
PLC STM32F429ZI Arduino
Gateway STM32F103RB Arduino
Drone STM32F103RB Bare Metal
CNC STM32F429ZI Bare Metal
Reflow Oven STM32F103RB Arduino
Console MK64FN1M0VLL12 Riot
Steering Control SAM3X8E Arduino
Heat Press SAM3X8E Arduino

6.5.4 Emulating the SEL-751
We configured QEMU to use our synthesized peripherals and
booted the image used in the inference stage. The kernel
reached the goal address in just over a minute after execut-
ing 3.3 billion blocks. After reaching the boot address, the
firmware continues executing without crashing, repeating a
communication loop with the FPGA.

6.6 Target: P²IM firmware
We evaluate Jetset on the nine publicly-available real-world
pieces of firmware used to evaluate P²IM [18]. These
systems use four different ARM SOCs, two Cortex M-
3 (STM32F103RB and SAM3X8E), and two Cortex M-4
(STM32F429ZI and MK64FN1M0VLL12) CPUs. Five of
these systems use Arduino as their operating system, one
uses the RIOT operating system, and three run on bare metal
(shown in Table 2).

6.6.1 Firmware configuration
We configured QEMU to use a Cortex M-3 or Cortex M-4
CPU as appropriate, and used the program entry point and
initial stack pointer as specified in the firmware’s vector table.
For each of the P²IM targets, we used the memory layout
specified in their SOC’s datasheets as their memory specifi-
cation. We allocated the full region allowed for MMIO as a
single contiguous MMIO block, not differentiating between
the different devices. We did not use any predefined peripher-
als from QEMU, all devices were inferred. For each of the
P²IM targets, we use the start of an application-specific event
loop as the target for Jetset. These event loops are easy to
locate: each of these pieces of firmware begin with a device
initialization process, followed by a loop that reads informa-
tion from peripherals, and response to this input. We select
these event loops as our targets, as they dictate the program
logic of the application, and are therefore most likely to have
application specific bugs.

6.6.2 Inferring the firwmare peripherals
Jetset took an average of 59.7 seconds to reach the target
in each of the nine P²IM subjects, and executed an average



of 55,739 basic blocks getting there. Jetset performed an
average of 892 MMIO reads to an average of 24 distinct
addresses, and 354 MMIO writes to an average of 44 distinct
write addresses. These MMIO reads and writes accessed an
average of 9 distinct devices for each system.

6.6.3 Synthesizing the firmware peripherals
Synthesizing the devices for each of the P²IM systems took
an average of 1.7 seconds. The synthesized devices produced
an average of 892 synthesized reads for 24 distinct addresses.
The variables produced by these reads had an average of
2.6 constraints per variable and resulted in 9 devices being
synthesized per subject. These concrete traces executed an
average of 44,258 basic blocks.

6.6.4 Emulating the firmware
Each of the concrete devices generated by Jetset reached the
target in the firmware. The concrete booting process took an
average of .35 seconds. None of the nine subjects crashed
after being concretely executed to the boot address. Most of
the firmware got booted to a loop in which the firmware read
out new commands from the peripherals, and attempted to
execute them.

7 Limitations
As we show in Section 6, Jetset works well for firmware run-
ning on a variety of embedded system architectures across
multiple application domains. However, our current imple-
mentation is not without limitations.

Path correctness. Jetset has no knowledge of the underlying
hardware other than the behavior that is observable to the
CPU. The path taken through firmware is not necessarily one
that may ever be returned by the hardware; however, the path
taken is one that is acceptable to the firmware—no interaction
with any of the peripherals results in a boot failure. While
the execution of firmware running on physical hardware is
constrained in its behavior by how the physical peripherals
really behave, these system constraints are external to the
firmware and cannot be inferred without auxiliary information
about its behavior.

Limited peripheral model. Jetset does targeted rehosting in
that it only constructs an emulator that is sufficient to emulate
the software component-under-test. If the firmware reads
from a peripheral’s address after reaching the target, Jetset
replays the last satisfying value read from that address. In our
tests, we found that this simple model is sufficient to perform
useful analysis and bug finding (as shown in Section 6); how-
ever, more complex interactions with the peripherals may not
be emulated correctly.

Another limitation of Jetset’s peripheral model is that Jetset
has no understanding of the semantics of the devices synthe-
sized besides what is needed to guide the firmware towards
the target address. We found that our limited peripheral model
caused the firmware to crash after reaching the target address

in one case. In the BeagleBoard-xM, we found that our emu-
lator attempted to execute data loaded from a serial boot from
our synthetic device. Jetset had no method to detect that the
data it is returning from device reads should be valid ARM
code, and crashed because of it.

In future work, we plan to have Jetset synthesize more
complex, stateful peripheral models as well as identify known
peripherals with existing emulator implementations.

No DMA support. Jetset does not support devices that per-
form direct memory access (DMA) to normal RAM. This is
because DMA is not observable by firmware since the device
accesses memory without the assistance of the CPU. In the
two cases that DMA was required to boot the firmware-under-
test, we either left the DMA device in the QEMU model (as
described in 6.2) or manually marked the DMA region sym-
bolic (as in the Robot firmware in 6.6). We leave automated
modeling of DMA to future work.

8 Conclusion
We described the design and implementation of Jetset, a sys-
tem that uses symbolic execution to automatically infer what
behavior embedded system firmware expects from its target
hardware. We use this inferred behavior to synthesize mod-
els of target hardware devices that can be used to execute
the firmware in an emulator. We demonstrate that the Jetset
technique is general by evaluating it on multiple computer
architectures, operating systems, and application domains.

The inferred device models allowed us to boot target
firmware in an emulator (QEMU), saving considerable engi-
neering effort that would be required to reverse-engineer the
hardware. Once booted to the specified target, an analyst can
then perform variety of dynamic testing tasks on the code of
interest. We demonstrated one such task: fuzz-testing system
calls on firmware from a Boeing 737 avionics system.
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A I/O Traces
Tables 3, 4 and 5 show inferred MMIO traces references in
Sections 6.2.3, 6.4.3, and 6.5.3.

Table 3: The synthesized device traces for the Raspberry Pi 2. See text in Section 6.2.3 for discussion. Note that device register
names and their function are included for exposition only. This information is not used by Jetset during inference or synthesis.

Device Offset I/O Behavior Name (# Reads) Explanation

DMA Controller 0x220--0xE20 0x10000000 X_DEBUG (10) Reduced performance LITE engine
3F00 7000 enabled for DMA channels 0, 2, 5, and 8–14.
RNG 0x0 0x1 RNG_CTRL (1) RNG Unit Read Enabled
3F10 4000 0x4 0x10000000 0x0 RNG_STATUS (2) First read satisfies wait period for

entropy, second specifies not to read from the RNG unit.
GPIO 0xC 0x0 0x8000 0x20000 GPFSEL3 (3) Initial control toggle, then GPIO pin 45 must

be set as output, pin 45 to alternate function 0.
3F20 0000 0x10 0x1000000 0x20000000 0x1000000 0x0 GPFSEL4 (8) Various mode set requirements for GPIO

0x0 0x800000 0x4000000 0x20000000 GPIO pins 40–49.
0x14 0x4 0x20 0x100 0x800 0x0 0x0 0x0 GPFSEL5 (12) Similar to above, modes for GPIO pins 50–53

0x0 0x4 0x20 0x100 0x800 (remaining bits not used)
0x38 0x0 0x0 0x0 GPLEV1 (3) Pin levels all low or unconstrained reads.
0x40 0x80000000 GPEDS0 (1) Event must be detected on GPIO pin 31!
0x44 0xfd000000 GPEDS1 (1) “Reserved” event status bits high during

clockevents_program_event .
UART0 (PL011) 0x0 0x0 ... DR (32) No data recieved from UART peripheral.
3F20 1000 0x18 0x20 0x0 ... 0x20 0x0 ... FR (204) Occasionally the UART transmit FIFO is full for

a shorter path, otherwise flag register is empty.
0x30 0x0 0x0 0x0 ... CR (1076) Unconstrained read, modify, writes during serial

printk statements.
0x38 0x0 IMSC (1) UART interrupt mask 0 avoids longer print path.

SDHOST 0x0 0x0 0x0 0x0 0x8000 0x8000 0x0 0x0 SDCMD (7) Unconstrained reads during a command request,
then a NEW_COMMAND read flag set, causing the request to fail.

3F20 2000 0x4--0x1C 0x30 0x0 SDARG, SDTOUT, SDCDIV ... (11) unconstrained reads during
0x38 0x3c 0x50 fail-mode register dump.
0x20 0x8 0x0 SDHSTS (2) FIFO error from SDHOST status, then

unconstrained read during register dump.
0x34 0x0 0x0 0x0 0x0 SDEDM (4) Unconstrained reads during enable, register dump.

AUX 0x4 0x4 0x0 0x2 0x0 0x1 0x0 AUX_ENABLES (6) Device reads SPI2, SPI1, and MINIUART
3F21 5000 during boot checks.

Table 4: The synthesized device traces for the CMU-900. See text in Section 6.4.3 for discussion. Note that device register
names and their function are included for exposition only. This information is not used by Jetset during inference or synthesis.

Device Offset I/O Behavior (# Reads) Explanation

Serial controller (Z85C30) 0x4 0x4 ... 0x4 0x0 0x4 0x0 (215) Read Register 0, 0x4 indicates the TX buffer is empty.
0x2000 0x0 0x4 ... When needed, Jetset responds with a non-empty status.
Real-time clock (DS1685) 0x1 0x80 0x56 0x55 0x43 0x43 (5) Indicates that the power status is healthy, other values
0x3000 infer proper reads from CMOS user RAM.
I/O Processor (386ex) 0x0 0x0 0x0 0x0 0x0 0x0 (5) Unclear; first four act as a 4 I/O clock cycle delay,
0x5000 and the fifth errors if the fifth LSB is not zero.
Unknown 0x0 0x1 ... 0x1 0x0 0x0 0x20 (16) Reverse engineering finds a loop until a zero is read. The
0x6000 0x0 remaining values satisfy flags to skip additional configuration.
Discrete input status? 0x0 0x20 (1) The Airborne Data Loader (ADL) is disconnected.
0x21e40080



Table 5: Some of the synthesized device traces for the SEL-751. See text in Section 6.5.3 for discussion. Note that device register
names and their function are included for exposition only. This information is not used by Jetset during inference or synthesis.

Device # Reads Offset I/O Behavior Explanation

FPGA Related Space 343 0x0 0x0, 0x16e360, 0x0,
0x42fcf44e, 0x127fbe3c,

Interactions including synchronization of

0x30000000 0x19bf8e3c, 0x0, 0x1f4,
0x0, 0x1f3, 0x1f4,

the FPGA clock. Exact details unknown.

0x0, 0x1f4, 0x0, 0x1f3,
0x1f4, 0x0, ...

FlexBus Controller 215 0x4 0x0 ... CSMR0 Unconstrainted reads during toggling
0xfc008000 of Flexbus device 0 read-only bit.
Fast Ethernet Controller 0 9 0x4 0x0, 0x0, 0x800000, 0x0,

0x0, 0x800000,
EIR0 Ethernet (MII) Interrupts are intermittently

0xfc030000 0x0, 0x0, 0x800000 raised, indicating a complete data transfer.
3 0x40 0x610, 0x141, 0x1080 MMFR0 MII Frame Register reads correspond with

raised interrupts, providing (invalid) data reads.
I2C 9 0x8 0x0 ... I2CR I2C control register—unconstrained reads
0xfc058000 occur while the firmware does control bit toggling.

31 0xC 0x20, 0x0, 0x0, 0x0, 0x2,
0x0, 0x10, 0x0, ...

I2SR Status register interrupt and condition flags.

4 0x10 0x0, 0x0, 0x0, 0x0 ... I2DR Unconstrained data read from I/O Register.
GPIO Pin Mux and Control 6 0x32 0x0, 0x0, 0x0, 0x4, 0x0,

0x0
PPDSDR_SSI Serial pin reads for path satisfaction.

0xfc0a4000 1 0x34 0x0 PPDSDR_BE Bit read test expected to be 0.
38 0x3c 0x10, 0x0, 0x10, 0x0, 0x10,

0x10, 0x10, ...
PPDSDR_PCI PCI data expected on pin 4.
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