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A vulnerable program

#include <stdlib.h>

int main() {
    void *p = malloc(100);
}
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Problem setting

✤ Trusted application:

✤ Untrusted operating system:
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Problem motivation
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Possible solutions

✤ Reimplement in a secure environment (e.g., µkernel)

✤ Hardware-based solutions (e.g., XOM processor)

✤ Multiple virtual machines (e.g., Proxos)

✤ Hypervisor-assisted (e.g., Overshadow)
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The Overshadow approach

7

Application

Operating system

Chen et al. Overshadow: A Virtualization-Based Approach to Retrofitting 
Protection in Commodity Operating Systems. ASPLOS’08
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Cloaking: Two views of
application memory
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The shim
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A majority of system calls can be passed through to the OS with no 
special handling. These include calls with scalar arguments that 
have no interesting side effects, such as getpid, nice, and sync.

                                                  — Chen et al. ASPLOS’08

✤ Marshals arguments and return values for system calls

✤ Communicates directly with the hypervisor
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Warmup:
A thought experiment
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Main Apache process Entropy pool
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Warmup:
A thought experiment

10

Main Apache process Entropy pool

Workers Workers’ entropy pools

getpid()

getpid()
⋱
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Technical goals

✤ Abstract away details of Overshadow

✤ Develop a malicious operating system kernel to attack protected 
applications

✤ Cause the protected application to act against its interests

11

11Monday, April 22, 13



Threat model

✤ Trusted, legacy application

✤ Unmodified system libraries

✤ Kernel cannot read or modify application state

✤ Kernel responds to system calls normally except for return values 
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Threat model: example
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asmlinkage long
sys_read(unsigned int fd, char __user *buf, size_t count);

                             User Kernel

buf

count

13Monday, April 22, 13



Threat model: example
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asmlinkage long
sys_read(unsigned int fd, char __user *buf, size_t count);

                             User Kernel

buf

count

✤ Write arbitrary data, but only inside the supplied buffer

✤ Arbitrary return value
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Abstraction

✤ Malicious kernel (modified Linux)

✤ No reading/writing application memory

✤ Handle all “unsafe” system calls correctly

✤ Can handle “safe” system calls maliciously

✤ Unmodified user space

15

15Monday, April 22, 13



Recall our vulnerable program
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#include <stdlib.h>

int main() {
    void *p = malloc(100);
}
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Step 1: mmap(2)/read(2);
normal behavior
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void *p;
p = mmap(4096);
read(0,p,4096);

stack

heap
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Step 1: mmap(2)/read(2);
malicious behavior
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Step 2: Standard I/O;
normal behavior
✤ fgetc()
✤ fgets()
✤ fread()
✤ fscanf()
✤ getc()
✤ getchar()
✤ getdelim()
✤ getline()
✤ gets()
✤ scanf()
✤ vfscanf()
✤ vscanf()
✤ …
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Step 3: LibC’s malloc

✤ Split into upper and lower halves
✤ Upper half: manages chunks, free lists, handles malloc() and 
free()

✤ Lower half: requests memory from the OS
✤ Maintains a top region of unallocated memory from the OS

✤ Metadata (including size) inline
21

80 104 size+1

topchunk 2

q

Application memory Free memorySize metadata

p

81

chunk 1
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The lower half algorithm

First call to malloc(n) [creating the top chunk]:
1. nb ← n + 4 rounded up to a multiple of 8 bytes
2. Determine the start of the heap via brk system call
3. Increase the size of the heap via brk
4. Increase the size again to maintain 8-byte alignment via brk

(updates the start S of the heap)
5. If step 4 failed, determine the end E of the heap (last brk’s return value)
6. Carve off a chunk of size nb
7. Write the size E - S - nb of the remaining top chunk at S + nb + 4
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malloc(n) example

1. nb ← n + 4 rounded up to a multiple of 8 bytes
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malloc(n) example

2. Determine the start of the heap via brk system call
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S,E
❷
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malloc(n) example

3. Increase the size of the heap via brk
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S,E
❷

S E
❸
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malloc(n) example

4. Increase the size again to maintain 8-byte alignment via brk

26

S,E
❷

S E
❸

S E
?❹
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malloc(n) example

5. If step 4 failed, determine the end E of the heap (last brk’s return value)
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S,E

❷

S E
❸

S E
?❹

SE
❺
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malloc(n) example

6. Carve off a chunk of size nb
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❸
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SE
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❻

❷
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malloc(n) example

7. Write the size E - S - nb of the remaining top chunk at S + nb + 4
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Attacking the lower half
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Attacking the lower half

1. Choose S such that S + nb + 4 is the address of a saved return address
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application code/data libc application stack

E - S - nb + 1
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Attacking the lower half

1. Choose S such that S + nb + 4 is the address of a saved return address
2. Choose E such that E - S - nb + 1 is the address of gets()
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E - S - nb + 1

gets()
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Step 3: Putting it all together;
Iago attack

1. Malicious kernel responds to brk

2. malloc() writes address of gets() over saved return address

3. gets() allocates a buffer via mmap()

4. Kernel returns an address on the stack

5. gets() fills the buffer with read()

6. Kernel responds with a return-oriented program
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Conclusions

✤ The system call interface is a bad RPC mechanism

✤ Malicious kernels can take control of protected applications

✤ Options:
1. Design a new system call interface
2. Enable the hypervisor to check the validity of all system calls
3. Paraverification (see the next talk!)
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Thank you
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