
March 19, 2013

IAGO ATTACKS: WHY THE SYSTEM
CALL API IS A BAD UNTRUSTED

RPC INTERFACE
Stephen Checkoway and Hovav Shacham

1

1Monday, April 22, 13

A vulnerable program

#include <stdlib.h>

int main() {
 void *p = malloc(100);
}

2

2Monday, April 22, 13

Problem setting

✤ Trusted application:

✤ Untrusted operating system:

3

3Monday, April 22, 13

Problem motivation

4

4Monday, April 22, 13

Problem motivation

4

4Monday, April 22, 13

Problem motivation

4

4Monday, April 22, 13

Problem motivation

4

4Monday, April 22, 13

Possible solutions

✤ Reimplement in a secure environment (e.g., µkernel)

✤ Hardware-based solutions (e.g., XOM processor)

✤ Multiple virtual machines (e.g., Proxos)

✤ Hypervisor-assisted (e.g., Overshadow)

5

5Monday, April 22, 13

Possible solutions

✤ Reimplement in a secure environment (e.g., µkernel)

✤ Hardware-based solutions (e.g., XOM processor)

✤ Multiple virtual machines (e.g., Proxos)

✤ Hypervisor-assisted (e.g., Overshadow)

6

6Monday, April 22, 13

The Overshadow approach

7

Application

Operating system

Chen et al. Overshadow: A Virtualization-Based Approach to Retrofitting
Protection in Commodity Operating Systems. ASPLOS’08

7Monday, April 22, 13

The Overshadow approach

7

Application

Operating system

Hypervisor

Shim

Chen et al. Overshadow: A Virtualization-Based Approach to Retrofitting
Protection in Commodity Operating Systems. ASPLOS’08

7Monday, April 22, 13

The Overshadow approach

7

Application

Operating system

Hypervisor

Shim

Chen et al. Overshadow: A Virtualization-Based Approach to Retrofitting
Protection in Commodity Operating Systems. ASPLOS’08

7Monday, April 22, 13

Cloaking: Two views of
application memory

8

8Monday, April 22, 13

The shim

9

A majority of system calls can be passed through to the OS with no
special handling. These include calls with scalar arguments that
have no interesting side effects, such as getpid, nice, and sync.

 — Chen et al. ASPLOS’08

✤ Marshals arguments and return values for system calls

✤ Communicates directly with the hypervisor

9Monday, April 22, 13

Warmup:
A thought experiment

10

Main Apache process Entropy pool

10Monday, April 22, 13

Warmup:
A thought experiment

10

Main Apache process Entropy pool

Workers Workers’ entropy pools

getpid()

getpid()
⋱

10Monday, April 22, 13

Technical goals

✤ Abstract away details of Overshadow

✤ Develop a malicious operating system kernel to attack protected
applications

✤ Cause the protected application to act against its interests

11

11Monday, April 22, 13

Threat model

✤ Trusted, legacy application

✤ Unmodified system libraries

✤ Kernel cannot read or modify application state

✤ Kernel responds to system calls normally except for return values

12

12Monday, April 22, 13

Threat model: example

13

asmlinkage long
sys_read(unsigned int fd, char __user *buf, size_t count);

 User Kernel

buf

count

13Monday, April 22, 13

Threat model: example

14

asmlinkage long
sys_read(unsigned int fd, char __user *buf, size_t count);

 User Kernel

buf

count

✤ Write arbitrary data, but only inside the supplied buffer

✤ Arbitrary return value

14Monday, April 22, 13

Abstraction

✤ Malicious kernel (modified Linux)

✤ No reading/writing application memory

✤ Handle all “unsafe” system calls correctly

✤ Can handle “safe” system calls maliciously

✤ Unmodified user space

15

15Monday, April 22, 13

Recall our vulnerable program

16

#include <stdlib.h>

int main() {
 void *p = malloc(100);
}

16Monday, April 22, 13

Step 1: mmap(2)/read(2);
normal behavior

17

void *p;
p = mmap(4096);
read(0,p,4096);

stack

heap

17Monday, April 22, 13

Step 1: mmap(2)/read(2);
normal behavior

17

void *p;
p = mmap(4096);
read(0,p,4096);

stack

heap

stack

heap

mmap()

p

17Monday, April 22, 13

Step 1: mmap(2)/read(2);
normal behavior

17

void *p;
p = mmap(4096);
read(0,p,4096);

stack

heap

stack

heap

mmap()

stack

heap

read()

p p

17Monday, April 22, 13

Step 1: mmap(2)/read(2);
malicious behavior

void *p;
p = mmap(4096);
read(0,p,4096);

stack

heap

18Monday, April 22, 13

Step 1: mmap(2)/read(2);
malicious behavior

void *p;
p = mmap(4096);
read(0,p,4096);

p

stack

heap

mmap()

stack

heap

18Monday, April 22, 13

Step 1: mmap(2)/read(2);
malicious behavior

void *p;
p = mmap(4096);
read(0,p,4096);

p p

stack

heap

mmap()

stack

heap

read()

stack

heap

18Monday, April 22, 13

Step 2: Standard I/O;
normal behavior
✤ fgetc()
✤ fgets()
✤ fread()
✤ fscanf()
✤ getc()
✤ getchar()
✤ getdelim()
✤ getline()
✤ gets()
✤ scanf()
✤ vfscanf()
✤ vscanf()
✤ …

19

stack

heap

stack

buf

heap

mmap()

stack

buf

heap

read()

19Monday, April 22, 13

Step 2: Standard I/O;
malicious behavior
✤ fgetc()
✤ fgets()
✤ fread()
✤ fscanf()
✤ getc()
✤ getchar()
✤ getdelim()
✤ getline()
✤ gets()
✤ scanf()
✤ vfscanf()
✤ vscanf()
✤ …

20

stack

heap

mmap()

stack

heap

buf

read()

stack

heap

buf

20Monday, April 22, 13

Step 3: LibC’s malloc

✤ Split into upper and lower halves
✤ Upper half: manages chunks, free lists, handles malloc() and
free()

✤ Lower half: requests memory from the OS
✤ Maintains a top region of unallocated memory from the OS

✤ Metadata (including size) inline
21

80 104 size+1

topchunk 2

q

Application memory Free memorySize metadata

p

81

chunk 1

21Monday, April 22, 13

The lower half algorithm

First call to malloc(n) [creating the top chunk]:
1. nb ← n + 4 rounded up to a multiple of 8 bytes
2. Determine the start of the heap via brk system call
3. Increase the size of the heap via brk
4. Increase the size again to maintain 8-byte alignment via brk

(updates the start S of the heap)
5. If step 4 failed, determine the end E of the heap (last brk’s return value)
6. Carve off a chunk of size nb
7. Write the size E - S - nb of the remaining top chunk at S + nb + 4

22

22Monday, April 22, 13

malloc(n) example

1. nb ← n + 4 rounded up to a multiple of 8 bytes

23

23Monday, April 22, 13

malloc(n) example

2. Determine the start of the heap via brk system call

24

S,E
❷

24Monday, April 22, 13

malloc(n) example

3. Increase the size of the heap via brk

25

S,E
❷

S E
❸

25Monday, April 22, 13

malloc(n) example

4. Increase the size again to maintain 8-byte alignment via brk

26

S,E
❷

S E
❸

S E
?❹

26Monday, April 22, 13

malloc(n) example

5. If step 4 failed, determine the end E of the heap (last brk’s return value)

27
S,E

❷

S E
❸

S E
?❹

SE
❺

27Monday, April 22, 13

malloc(n) example

6. Carve off a chunk of size nb

28
S E

❸

S E
?❹

SE
❺

❻

❷

S

nb

E

E - S - nb

28Monday, April 22, 13

malloc(n) example

7. Write the size E - S - nb of the remaining top chunk at S + nb + 4

29
S E

❸

S E
?❹

SE
❺

❻

❷

❼
S

nb

E

E - S - nb

29Monday, April 22, 13

Attacking the lower half

30

S

nb

E

E - S - nb

30Monday, April 22, 13

Attacking the lower half

1. Choose S such that S + nb + 4 is the address of a saved return address

30

S

nb

E

E - S - nb

application code/data libc application stack

E - S - nb + 1

30Monday, April 22, 13

Attacking the lower half

1. Choose S such that S + nb + 4 is the address of a saved return address
2. Choose E such that E - S - nb + 1 is the address of gets()

30

S

nb

E

E - S - nb

application code/data libc application stack

E - S - nb + 1

gets()

30Monday, April 22, 13

Step 3: Putting it all together;
Iago attack

1. Malicious kernel responds to brk

2. malloc() writes address of gets() over saved return address

3. gets() allocates a buffer via mmap()

4. Kernel returns an address on the stack

5. gets() fills the buffer with read()

6. Kernel responds with a return-oriented program

31

31Monday, April 22, 13

Conclusions

✤ The system call interface is a bad RPC mechanism

✤ Malicious kernels can take control of protected applications

✤ Options:
1. Design a new system call interface
2. Enable the hypervisor to check the validity of all system calls
3. Paraverification (see the next talk!)

32

32Monday, April 22, 13

Thank you

33
Fin

33Monday, April 22, 13

