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Abstract

A new technique is presented for identifying the imple-
mentation version number of software that is used for
Internet communications. While many programs may ex-
change version numbers, oftentimes only a small subset
of them send any information at all. Furthermore, they
usually do not provide accurate details about which imple-
mentation is used. We use machine learning techniques
to build a feature database and then apply this to net-
work traffic to try to identify specific implementations on
servers. We apply our technique to OpenSSL and report
our results.

1 Introduction

Many Internet protocols communicate meta information
about the software that is running at each end host. In-
cluded are details such as protocol version number, avail-
able parameters, software name and version, and other
useful information that allows protocols to self-tune their
interaction. Although the meta information included in
the early messages in Internet protocols can be extremely
useful, it also introduces potential security risks. Due
to publicly available lists of software vulnerabilities cor-
responding to early versions of nearly any well-known
implementation, by announcing an implementation ver-
sion number, the software is also broadcasting a set of
vulnerabilities. Although exchanging protocol version
number is frequently necessary to ensure interoperability,
as a security precaution, many protocol implementations
provide no information about the implementation version
number. This represents a challenge to those interested in
measuring and classifying Internet traffic.

Our goal in this paper is to provide a framework and a
tool for measuring the prevalence of protocol implemen-
tation versions and specific instantiations for common
communication protocols on the Internet, without trust-
ing the meta information shared by the communicating
parties. Rather than believing the version numbers and
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implementation identifiers that are included in the traf-
fic, we attempt to automatically infer protocol version
numbers and to additionally classify network traffic ac-
cording to specific implementations, based on observable
implementation fingerprints.

Our approach is to use machine learning to extract
features from training data for known protocol implemen-
tations and versions. Once we build a database of features
for a particular protocol, X, we crawl the web, speaking
X to as many protocol peers as possible. Our analysis en-
gine then uses the database of features that was built with
the training data to attempt to determine what version and
implementations of X we have found. Thus, we are able
to measure the prevalence of specific protocol versions
and implementations on the Internet without trusting that
the implementations are speaking the truth.

As a case study, we implement our system and mea-
sure the prevalence of OpenSSL versions on the Internet.
We find that a small fraction (about 7%) of Apache de-
ployments use a Linux distribution-default configuration
which report the OpenSSL version used. We use this
as ground truth data to train our classifiers. Our results
indicate that many insecure versions of OpenSSL are in
active deployment, and we believe that our research pre-
sented here has led to a much more accurate analysis
of the state of SSL on the Internet than was previously
possible. This case study demonstrates the utility of our
general framework for measurement.

2 Tool design and case study methodology

In this section we give a high-level overview of our clas-
sification tool, which uses a combination of benign scan-
ning and machine learning to identify version numbers
for protocol implementations deployed on remote servers.
We designed the tool using a modular architecture so that
it may be used in a variety of Internet measurement stud-
ies. The end result is a tool which is useful for classifying
protocol implementations for which we have some labeled
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Figure 1: Architectural diagram for the classification tool.

data. For our SSL/TLS case study, we rely on web servers
which are configured to report their version number.

Our classification tool consists of four components: a
URI generator, a feature extractor, a database, and an
analysis engine. Figure 1 shows the components and
the flow of information through the system. The URI
generator, feature extractor and classification algorithm
are modular and can be easily replaced by new modules
for different tasks. We first describe each component in
the abstract; then we describe our concrete instantiation
for classifying OpenSSL versions.

URI generator. The URI generator’s job is to produce a
set of URISs to be consumed by the feature extractor. This
modular component can be as simple as a static set of
URIs produced one at a time or as complex and dynamic
as may be required for the particular use case. The same
generator can be used for a variety of classification tasks.
Examples of generators include a generator that produces
the Alexa top 500 sites [1], a generator that walks through
the entire IPv4 address space, and a web crawler that starts
at a fixed set of web sites and recursively crawls links it
encounters. We use the last example in our SSL/TLS case
study.

Feature extractor. The feature extractor takes as input
a URI, interacts with the network server pointed to by the
URI, and produces a feature vector for an arbitrary set
of features. For example, the feature extractor can fetch
web pages, query the server for configuration options,
or engage in aggressive probing such as that performed
by standard network measurement tools like nmap. The
feature extractor is necessarily specific to the classifica-
tion task; however, the modular nature of our architecture
makes swapping out the feature extractor for a different
implementation easy.

Database. After the feature extractor has produced a
feature vector, it is inserted into a generic relational
database.

Analysis engine. The heart of our system is the analy-
sis engine which runs one of a variety of machine learning
classification algorithms on the data in the database. The
analysis engine heavily leverages the Python Orange li-
brary [22], an open source data visualization and analysis

tool, to first cluster and then classify the data. The analysis
engine assumes that some subset of the data has labels.

We used a semi-supervised learning approach to clas-
sify the remaining, unlabeled data. Since there are likely
to be a large number of protocol implementation versions
(e.g., for our OpenSSL study, we found 79 distinct ver-
sions), we use k-nearest neighbors (kNN) as our classifier.
The downside of kNN is that its accuracy depends heavily
on the similarity metric used. To mitigate this, we first
perform a k-means clustering and then run kNN for each
cluster.

Although we use k-means and kNN, they are not the
only possible choices. Some applications may perform
better with other choices and thus this is a configurable
option. We experimentally validated that k-means and
kNN are good choices for our use case among the set of
algorithms supported by Orange. Another option which
may perform well for our use would be a multiclass lo-
gistic regression since many of our features are binary or
categorical.

2.1 OpenSSL version instantiation

To be useful as a classification tool, the URI generator
and feature extractor need concrete instantiations.

URI generator. Our URI generator is implemented as
a web crawler that traverses HTTP links and recursively
looks for any new HTTPS links to pass to the feature
extractor. To determine where to start our crawl, we first
identified several websites that contain a large number of
external links to many different domains. We pointed our
crawler at several of these sites, including http: //www.
cnn.com and http://news.ycombinator.com
and ran it until we had collected a set of about 123,000
websites. We believe this set to be a representative sample
of the sites frequently visited by average users because
the sites are all within a few degrees of separation from
popular websites.

Feature extractor. For each URI produced by the URI
generator, the feature extractor initiates a secure connec-
tion to the server and interrogates it to learn a variety of
features including:

o supported SSL/TLS versions and ciphersuites;
secure/insecure renegotiation support;
session resumption support;
CA, validity, issue date, expiration date;
TLS compression support;
TCP/IP stack information;
HTTP headers;
web server configuration.
Some of the features we discovered had surprising char-
acteristics. For example, we discovered that the server
response HTTP header was reported by 81.7% of the
servers in our data set. 7.8% of those server responses
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contained a number of useful features such as the version
numbers of most of the Apache software stack including
Apache modules like mod_perl and mod_php and, impor-
tantly for us, OpenSSL. These version numbers form the
labels that the analysis engine uses. The server response
is described in more detail in Section 4.

We construct our feature extractor by extending version
0.4 of iISECPartner’s SSLyze tool [15]. SSLyze provides
methods to enumerate all cipher suites for SSLv2, SSLv3,
TLSv1.0, TLSv1.1 and TLSv1.2. In addition, SSLyze
provides methods to enumerate session resumption sup-
port, to scan for insecure session renegotiation, and to
collect information about site certificates (e.g., expiration
date, issuing certificate authority, and certificate signature
validation).

We implemented the following extensions to SSLyze
via new plugins: TLS compression support detection (i.e.,
to determine vulnerability to the CRIME attack [14]);
HTTP headers collection generated by website navigation;
server response string parsing and TCP/IP configuration
information collection.

3 SSL/TLS background

Secure Socket Layer (SSL/TLS) [7] is perhaps the most
important security protocol on the Internet. Although
SSL/TLS has many applications — including Virtual Pri-
vate Networking and inter-application communication —
it is most commonly used to secure web traffic served via
the HTTPS protocol. The relevance of TLS and HTTPS
has increased in recent years, as many websites (includ-
ing Gmail, Facebook and Twitter) have begun to deploy
HTTPS by default [6, 9, 11, 25].

While TLS is widely deployed across the Internet,
there are only a small number of popular implementa-
tions. When considering HTTPS, the most common are
OpenSSL (used by a majority of Apache deployments)
and Microsoft’s SChannel. Results from the February
2013 Netcraft survey indicate that Apache servers dom-
inate IIS implementations across surveyed Internet do-
mains [18], indicating that OpenSSL is likely the most
popular TLS implementation on the Internet.

In fact, given the widespread dependence on OpenSSL,
it is reasonable to say that for many users, OpenSSL is
TLS. This should draw attention from the security com-
munity as there are numerous versions of OpenSSL in
current deployment, many of which include serious proto-
col vulnerabilities [3, 19, 29]. If an attacker can determine
the version of OpenSSL deployed on a specific webserver,
he may be able to seriously compromise the effectiveness
of any TLS connection made to that site.

Surprisingly, we have very little information on the
deployment of OpenSSL library versions, because most
web servers do not advertise this information. Even if
an Apache server version is known, this does not nec-

essarily imply that the server is using a known version
of OpenSSL: in many systems, the installed OpenSSL
version is determined by various factors, including the
particular Apache and OS distribution, the presence of
other software on the system, and (most commonly) server
misconfiguration. This can lead to the widespread deploy-
ment of old, broken versions of the library.

3.1 SSL/TLS (in)security

Recent attacks on SSL/TLS, such as BEAST [10] and
CRIME [14], demonstrate the sensitivity of SSL/TLS
security to configuration choices made by server admin-
istrators. We briefly describe several protocol and im-
plementation vulnerabilities below. Many of these were
identified by the SSL Pulse project [24].

SSLv2 support. SSLv2 is known to have many vul-
nerabilities which make it unsuitable for use in secure
communications. Although SSLv2 is considered so in-
secure that major Linux distributions don’t even build
OpenSSL with support for it anymore, the SSL Pulse data
estimates that 28.4% of SSL servers on the Internet today
support this version of the protocol, more than the num-
ber of sites that support TLSv1.1 and TLSv1.2 combined
(9.2% and 11.4% respectively) [24].

Insecure session renegotiation. In 2009 a practical at-
tack on SSLv3/TLSv1.0 was proposed that exploited
flaws in the session renegotiation feature allowing for
a man-in-the-middle attack. The vulnerability allows an
attacker to queue an HTTP command to be executed by
the server on behalf of the client immediately when a
client makes an SSL connection.

Insecure CBC mode ciphersuites. Several recent at-
tacks have illustrated flaws in the implementation of CBC
mode encryption within SSL and TLS. These flaws stem
from two basic causes: the improper use of initialization
vectors [4, 10] and flaws related to TLS’s insecure MAC-
then-encrypt approach to authenticated encryption [3, 5].
The latest of these vulnerabilities [3] was patched in
February, 2013, hence these attacks remain an active con-
cern. Similar flaws are also present in Datagram TLS, and
were recently exploited by AlFardan and Paterson [2].

TLS compression support. A general class of attacks
exploiting protocol vulnerabilities due to TLS compres-
sion and SPDY. While this mode of operation has been
recognized as insecure for a number of years [16], the re-
cent CRIME attack demonstrated the feasibility of using
this vector to attack critical information such as session
cookies [14].

Software vulnerabilities. The OpenSSL implementa-
tion of TLS and SSL has been subject to numerous soft-
ware vulnerabilities. These include dozens of implemen-



tation flaws with potential consequences ranging from
denial of service to remote code execution [21].

One of the results of our research is the ability to iden-
tify versions of OpenSSL in use on the Internet. Since
many versions of OpenSSL contain known, severe vul-
nerabilities, such as information leakage and remote code
execution [26-28], by examining a large, representative
sample of servers, we get an indication of what fraction
of servers in use today are vulnerable.

4 Results

All tests described below were run on m2.4xlarge Amazon
EC2 instances with 64 GB of RAM and four cores running
Red Hat Enterprise Linux 6, PostgreSQL 8.4.12, Python
2.6.6 and Orange 2.0b. The tests were extremely memory
and CPU intensive and even with these sizable resources
our tests took on the order of hours to days to run on a
test data set containing 123,345 scanned sites.

4.1 Prediction accuracy

As described in Section 2, our analysis engine takes a
semi-supervised learning approach to version identifica-
tion. To determine how accurate our classification is, we
perform a 10-fold cross validation on our training data
which consists of the self-reported OpenSSL versions. In-
terestingly, we find that if we exclude only the OpenSSL
version from the Apache server response HTML header,
we can identify the OpenSSL version with overwhelm-
ing probability by using the reported version numbers of
Apache modules like mod_php and mod_perl; however,
this result is misleading. Among all 9,653 of the scanned
web sites which report module versions numbers, only
615 do not report an OpenSSL version. We hypothesize
that this is due to the use of a different SSL/TLS library
such as GNU TLS. Thus, when testing accuracy, we omit
the entire server string from each 10% test set.

Because the accuracy of kNN is so dependent on the
similarity metric, we first cluster similar points and run
kNN on each cluster (see Section 2). The accuracy of our
classification (weakly) depends on the number of clusters
we use. We test with £k = 10, 20, and 30 clusters. For
each cluster, we use k = 10 neighbors to classify each
test point. OpenSSL versions are split into: major, mi-
nor, fix, patch and (optionally) distro-build versions [20].
For example, an OpenSSL version running on Fedora
Linux might be openssl-1.0.0a-fedoral. The major ver-
sion would be 1, the minor 0, the fix 0, the patch a and the
distro-build fedoral. For OpenSSL, there are essentially
two major.minor version combinations in use, 0.9 and
1.0. Therefore, we tread major and minor versions as a
single version component. Table 1 and Figure 2 show the
percentage of versions that can be identified correctly.

Version Component k=10 k=20 k=30
major.minor 91.6 94.3 93.4
fix 75.5 74.0 75.7
patch 50.2 49.6 54.7
distro-build 49.6 49.2 54.7

Table 1: Percentage of OpenSSL version components
correctly predicted for k clusters. The percentages in each
row are the percentages of correctly predicting the version
components up to the given component.
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Figure 2: Percentage of OpenSSL version components
correctly predicted for k clusters.

4.2 Observed OpenSSL versions

Since we are focused on classifying OpenSSL versions,
we need to remove data points which do not correspond
to OpenSSL versions but come from Microsoft SChan-
nel, GNU TLS, or other SSL/TLS implementations. The
first step of the analysis engine is to perform k-means
clustering. This produces clusters of data whose feature
vectors lie close together in the feature space. We hy-
pothesize that OpenSSL data points are likely to cluster
together (although not necessarily in a single cluster) and
that other implementations are not likely to lie in clusters
with (many) OpenSSL data points. To that end, for each
cluster, we examine the number of data points that are
labeled and throw out any cluster which does not contain
at least 10% labeled data.

After removing clusters with too few labeled data
points, we have 61,832 unlabeled data points. From this
we can give a rough breakdown of popularity of OpenSSL
versions on the Internet, Table 2. In the following sec-
tion, we discuss the implications of these results in the
context of vulnerabilities present in different versions of
OpenSSL.



Version Percentage
0.9.8e-fips-rhel5 37.25
0.9.8¢ 14.50
0.9.7a 7.02
0.9.80 4.76
1.0.0-fips 4.36
0.9.7d 291
0.9.8n 2.75
0.9.7e 1.94
0.9.8¢c 1.80
0.9.8m 1.74
0.9.8¢e 1.72
0.9.8r 1.71

Table 2: Most popular OpenSSL versions on the Internet.
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Figure 3: Percentage of OpenSSL deployments with at
least n unpatched vulnerabilities

4.3 Vulnerabilities

From the OpenSSL website’s known vulnerability report
section [21] we see that 75.9% of known vulnerabilities
apply to five or more OpenSSL versions within the same
patch family. Thus if the OpenSSL implementation can
be accurately fingerprinted to within a patch family then
there is a high probability that at least some of the vulner-
abilities reported for the guessed OpenSSL version will
apply even if the guess is incorrect.

Based on the results in Table 2 and data from the
OpenSSL vulnerability report [21], we have computed the
number of reported vulnerabilities for each OpenSSL ver-
sion that we have predicted using our analysis engine. Our
results show that 95% of all deployed OpenSSL versions
have at least one known CVE that hasn’t been patched by
OpenSSL (but that may have been patched by an individ-
ual distribution vendor). 64.12% of all deployed OpenSSL
versions have more than 10 CVEs. The complementary
CDF of vulnerabilities is presented in Figure 3.

One of the least surprising findings of our survey is that
most users are running the OpenSSL version included

Distribution OSSL Version CVEs
Debian Squeeze (6.0) 0.9.80 11
Debian Lenny (5.0) 0.9.8¢ 24
Debian Etch (4.0) 0.9.8¢c 26
RHEL 6 0.9.8e/1.0.0-fips 0/14
RHEL 5 0.9.7a/0.9.8e-fips  14/0
RHEL 4 0.9.6b/0.9.7a 9/14
Fedora 18 1.0.1c 3
Fedora 17 1.0.0i 3
Fedora 16 1.0.0e 9

Table 3: Default OpenSSL versions shipping with popular
Linux distributions.

in their Linux distribution and, in many cases, users do
not keep their Linux installations up to date. We will
discuss potential reasons for this in the next section. Ta-
ble 3 includes a list of three of the most popular Linux
distributions that we found in our crawl as well as the
default OpenSSL version that each shipped with.

We note that many of the most popular OpenSSL ver-
sions in Table 2 are versions that shipped in the popular
Linux distributions in Table 3. This table indicates that
most of the default OpenSSL versions included in ship-
ping Linux distributions have several known vulnerabili-
ties. It is important to note that Linux distributions may
patch some of these vulnerabilities on their own, though
manufacturers usually do not patch all vulnerabilities.
This is because many vulnerabilities are discovered after
support for a given version is no longer being supported.
Our training data is unable to take these patch levels into
account for many distributions (such as Debian). This is a
fundamental limitation of our data set and of the training
data available. As a result, the number of CVEs filed
against an OpenSSL version form an upper bound of how
many known vulnerabilities might exist, but in practice
the number of outstanding vulnerabilities could be lower.
However, simply discovering the base version of a par-
ticular OpenSSL server raises the possibility of it being
vulnerable to a known attack.

5 Discussion

The results of our SSL/TLS case study validate our mod-
ular framework and general approach for identifying and
classifying versions of network protocol implementations.
Because our framework treats the modular components
(the URI generator, feature extractor, and classification
algorithms) as black boxes, we can plug in different mod-
ules to study other protocol implementations or a different
swath of the Internet with a minimum of effort. In the
future, we plan to do exactly this (see Section 8).



In the rest of this section, we discuss the significance
of these results and address some of the questions that
they raise.

5.1 Severity of vulnerabilities

Our results indicate that many of the OpenSSL servers
on the Internet are vulnerable to implementation-specific
exploits described in CVEs cataloged by the OpenSSL
project. Our first consideration is the severity of the vul-
nerabilities. Of the 54 vulnerabilities, four can lead to
remote code execution, fourteen to a DoS and seven to
information leakage. We observe that types of vulnerabil-
ities range in severity from moderate to catastrophic. We
therefore assert that not only are these OpenSSL servers
vulnerable to many of the protocol attacks as described by
the SSL Pulse project [24] but that they are also widely
unprotected against implementation-specific attacks that
could, in some cases, not only compromise the privacy
of an existing SSL session, but also the security of the
underlying server.

5.2 Distribution-specific patches

We have also observed that many Linux distributions re-
lease package updates in fixed-length cycles. The versions
of all major libraries, including OpenSSL, are fixed at the
end of distribution’s release cycle. The this prevents all
further package updates, including security patches, that
the library vendor releases from being automatically inte-
grated into new builds of the package. If a major vulnera-
bility is discovered an individual distribution’s package
maintainer may elect to backport the patch and release it
as part of a security update for that distribution, but this
is not guaranteed.

This process is problematic for several reasons. First,
the package maintainers responsible for backporting
patches cannot necessarily provide the level of scrutiny
toward patch as the library maintainers can. Also, many
of the CVEs are released after a distribution has stopped
releasing security patches for an outdated, but still widely
deployed release. This results in mission-critical systems
being left connected to the Internet without any ability
to receive security patches. To illustrate this point, our
analysis has revealed that Debian Lenny which officially
supports OpenSSL version 0.9.8g is still widely deployed
on the Internet. This particular version has 24 known
vulnerabilities, 17 of which Debian patched before it dis-
continued support for Lenny. The remaining vulnerabil-
ities will never be patched. We found that 0.7% of all
of the servers that we crawled self-reported that they run
Lenny in the server response header. An attacker viewing
this information will immediately know that this server
must be running unpatched versions of many libraries and
daemons that may be vulnerable to remote code execution
exploits.

5.3 TLS1.1/1.2 deployment

The only OpenSSL branch that supports TLS1.1/1.2 is the
OpenSSL 1.0.1 branch [20], which, as shown in Table 2
is not widely deployed. We believe that administrators are
hesitant to upgrade to the 1.0.1 branch of OpenSSL be-
cause most Linux distributions have not yet released pack-
ages for it. To further complicate matters, the OpenSSL,
mod_ssl, and Apache versions are interdependent making
upgrading one without the others difficult. These compli-
cations prevent many administrators from upgrading their
web server stacks on their own. Since most Linux distri-
butions do not include the OpenSSL 1.0.1 branch, a large
fraction of Apache servers cannot support the most recent
versions of TLS, even if their administrators wanted to.
This observation is corroborated by the SSL Print’s ob-
servations of TLS1.2/1.2 market penetration during the
same time period as our crawl [24]

5.4 Case study conclusions and future work

The current state of OpenSSL deployment on the public
Internet is not good. By actively interrogating web servers,
our tool discovered close to 62% of web servers using
OpenSSL are running versions which contain known vul-
nerabilities that are susceptible to exploitation. This is
explained, at least in part, by the fact that many web server
stacks use the default version of OpenSSL provided by
the operating system which can become stale if not kept
up-to-date.

In the future, we plan to explore the nature of biases in
our training data by leveraging additional classification
techniques on additional features such as operating system
version. We believe that the additional data labels will
provide insight to our current semi-supervised approach.
In addition, we plan to explore avenues for acquiring
better training data for additional TLS implementations.

6 Limitations of data

The approach that we use for collecting our training data
is a good approach for fingerprinting OpenSSL implemen-
tations but it has several limitations. The major limitation
of our approach comes from our analysis making the as-
sumption that the observed labels (the OpenSSL version
numbers) come from web servers that accurately report
them. We believe that this is likely to be the case since
Apache programatically generates this information when
it is run rather than being hard coded in a configuration
file. A hard coded value would run the risk of not being
updated when OpenSSL is updated and thus the server
would report old version numbers. Another concern is
that a clever administrator might try to spoof these labels
to throw off would-be attackers. While this is a concern,
we did not observe any cases where observed features
did not match the reported OpenSSL version. Addition-



ally, there is the possibility that our training data may be
skewed towards servers that are configured with default
settings or towards servers that are infrequently updated.
Both concerns can be addressed by starting with a better
set of data for which we have ground truth.

We are also limited by the fact that we are only able to
collect training data for OpenSSL and thus cannot identify
other SSL/TLS implementations such as GNU TLS or Mi-
crosoft SChannel. As a result, we were forced to rely on
clustering techniques to identify likely OpenSSL imple-
mentations from among the servers we crawled. This in-
troduces both false positives — that is, SSL/TLS libraries
we classify as being OpenSSL when they are not— and
false negatives — throwing out OpenSSL data points be-
cause the clusters do not contain enough labeled instances.
Since we again do not have ground truth, we cannot mea-
sure the accuracy of this binning technique. More com-
plete training data would remove this limitation.

Finally, we were only able to scan web servers on the
public Internet. Thus, our results do not generalize to
all OpenSSL deployments such as those on corporate
LANSs or behind NAT gateways, an important problem
in its own right due to the presence of malware on these
networks resulting from, among other things, bring-your-
own-device corporate cultures.

7 Related work examining SSL/TLS

Much of the SSL security research to date considers the
quality of certificates deployed across websites, as well
as server-based configuration options. Community driven
projects such as the EFF SSL Observatory and Netcraft
SSL Survey have been erected to provide an in-depth anal-
ysis of server certificates on the web. More concretely, the
EFF SSL Observatory aims to determine the trustworthi-
ness of Certificate Authorities by investigating multiple
features of all server certificates on the web (e.g., number
of certificates signed by an authority) [8]. The Netcraft
SSL Survey is a monthly data collection service that at-
tempts to identify how online businesses use encryption
to secure their online transactions (i.e., confirming known
certificate usage and deployment) [18]. In 2012, Heninger
et al. [12] performed an Internet-scale analysis of all SSL
certificates. The intent of the analysis was to determine
how many servers had weak or insecure key generation
mechanisms. The end result was the startling realization
that 5.57% of deployed SSL servers shared an RSA key
factor.

In the past few years there have been several high pro-
file attempts to survey SSL servers that are vulnerable
to the known protocol attacks with varying areas of fo-
cus [13, 15, 17, 23]. In contrast, we take an entirely new
approach to analyzing the security of SSL servers by look-
ing at individual, implementation-specific vulnerabilities
rather than looking for protocol-specific ones. In doing

so we classify the OpenSSL implementations of a large
sample of servers and chart these implementations against
known version-specific vulnerabilities for which CVEs ex-
ist. We show that a large percentage of servers are running
OpenSSL versions for which there are many unpatched
vulnerabilities. In many cases, these vulnerabilities are
severe and in some cases lead to total privacy breaches or
remote code execution [26-28].

Finally, recent work attempts to fingerprint SSL library
type (e.g., SChannel vs. OpenSSL) by actively probing
TLS handshake responses [30] for a list of known error
responses. While this tool, SSLAudit, can distinguish dif-
ferent libraries, it is not able to determine library version.

8 Conclusions and future work

We have shown that machine learning techniques can
be effective as a means of classifying Internet communi-
cation based on the implementations that generated the
traffic. Identifying specific implementations is extremely
useful for measuring and analyzing security. For exam-
ple, in our case study looking at SSL/TLS, we discovered
that more than 62% of the installations running OpenSSL
deployed versions that are known to be susceptible to
published exploits.

Our case study discovered that default configurations
are typically maintained, and we know that these often
become stale quickly. Studies such as ours can be used
to identify the prevalence of patch applications on the
Internet, and we believe that our technique can be easily
applied to other protocols. We plan to continue to enhance
our machine learning techniques and to implement addi-
tional case studies to study the implementations of other
security-sensitive protocols such as SSH or DNS. One
objective of this work is to provide measurement tools
that analysts can use to discover how widely patches have
been applied to different software packages. We also hope
our work will provide generic tools for researchers who
need to learn about the use of particular implementations
of protocols.
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