SINGLE-BALLOT RISK-LIMITING AUDITS USING CONVEX OPTIMIZATION

Stephen Checkoway, Anand Sarwate, Hovav Shacham

OVERVIEW

- New model of elections
- Simple, ballot-based auditing algorithm

ASSUMPTIONS

- We have electronic Cast Vote Records (CVRs)
- Inspecting ballot reveals voter's intent
- Efficiently sample ballots uniformly at random
- 2 candidates and 1 "no vote" candidate (for this talk)

ASSUMPTIONS

- We have el
- Inspecting
- Efficiently :

2 candidate

CHUCK BALDWIN AND dedicate fur DARRELL CASTLE sources; to wettands, p Constitution wildlife hab teritage; to Lizard People protect, en Rs) Three-Pic until the write-in, if any U.S. SENATOR VOTE FOR ONE DEAN BARKLEY Independence ldom NORM COLEMAN Republican SOIL AL FRANKEN br this talk) Democratic-Farmer-Labor CHARLES ALDRICH Libertarian JAMES NIEMACKL Constitution Lizard Reople write-in, if any S U.S. REPRESENTATIVE DISTRICT

ASSUMPTIONS

- We have electronic Cast Vote Records (CVRs)
- Inspecting ballot reveals voter's intent
- Efficiently sample ballots uniformly at random
- 2 candidates and 1 "no vote" candidate (for this talk)

BALLOTS AS PAIRS

- *X* = {No vote, Candidate 1, Candidate 2} = {0, 1, 2}
- *i*th ballot $Z_i = (X_i, Y_i) \in X \times X$
- X_i : actual vote
- Y_i : reported vote (CVR)
- Examples: (2, 0); (1, 2)

ELECTION RESULTS

Reported Votes

		No vote	Candidate 1	Candidate 2	Actual total
Actual Votes	No vote	9 <i>,</i> 500	80	75	9,655
	Candidate 1	130	50,000	40	50,170
	Candidate 2	145	30	40,000	40,175

Reported total	9,775	50,110	40,115
-------------------	-------	--------	--------

Thursday, August 12, 2010

PROBABILITY DISTRIBUTION

Empirical joint probability distribution

Unknown

Known

Margin 9.995%

AUDITING TASK

- Sample ballots $Z_1, Z_2, \ldots, Z_K \sim M$
- Task: Decide if the reported winner is actual winner
 - Risk-limiting procedure
- Form estimate Â of M and compute some function of K and Â

ROTTEN REGION

- Rotten region: a set *R* of
 - Joint probability distribution
 - Actual winner and reported winner differ
 - Y-marginal agrees with reported outcome q

KULLBACK-LEIBLER DIVERGENCE

• Measure of discrepancy between distributions \hat{M} and R $D(\hat{M} \parallel R) = \sum_{z \in X \times X} \hat{M}(z) \log \frac{\hat{M}(z)}{R(z)}$

THE ALGORITHM (FOR ONE ROUND)

- Count *K* ballots and form approximation *M̂* Certify if min_{R∈R} D(*M̂* || *R*) > 1/*K* log *f(M̂)*/*ξ*
- Minimize using convex optimization

BOUNDING THE RISK

PICKING ξ

- Pick ξ to satisfy risk-level α
- What do we know about $f(\hat{M})e^{-K \cdot D(\hat{M} \parallel M)}$
 - For each \hat{M} that is certified, $f(\hat{M})e^{-K \cdot D(\hat{M} \parallel M)} < \xi$
 - For most \hat{M} , it is significantly smaller

PICKING ξ PICTORIALLY

PICKING ξ PICTORIALLY Probability $f(N_1)e^{-K_1} \equiv s$ space R M

PICKING ξ PICTORIALLY

Probability space

PICKING ξ PICTORIALLY Probability $(X_1)_{e-K_A} = z$ space $\mathbb{P}(\text{certify} \mid M \in R)$ R M $<\sum \xi + \sum p(\delta) = \alpha$

CAN ONE DO BETTER?

CONCLUSIONS

- New way to view ballots and their selection
- Simple auditing algorithm that doesn't throw away any information
- More clever analysis = more powerful algorithm!

