CS 383

Lecture 20 - Reductions

Stephen Checkoway

Spring 2024

Reductions

Reductions are a way of saying, "If problem ${\cal B}$ can be solved, then problem ${\cal A}$ can as well"

Reductions

Reductions are a way of saying, "If problem B can be solved, then problem A can as well"

Example:

A: Passing CS 383

B: Getting good grades on assignments, labs, and exams

We say that A reduces to B (i.e., the problem of passing CS 383 reduces to the problem of getting good grades) because

- If you get good grades, then you will pass
- If you fail, then you did not get good grades (contrapositive)

Reductions

Reductions are a way of saying, "If problem B can be solved, then problem A can as well"

Example:

A: Passing CS 383

B: Getting good grades on assignments, labs, and exams

We say that A reduces to B (i.e., the problem of passing CS 383 reduces to the problem of getting good grades) because

- If you get good grades, then you will pass
- If you fail, then you did not get good grades (contrapositive)

But note:

- Passing CS 383 doesn't say anything about your grade
- Getting bad grades doesn't mean you'll fail

Reduction of languages

We say language A reduces to language B (written $A \le B$) to mean "If B is decidable, then A is decidable"

We use a reduction $A \leq B$ in two different ways

- ullet Proving that language A is decidable. "Good-news reduction." If B is decidable, then A is decidable
- ullet Proving that language B is undecidable. "Bad-news reduction." If A is undecidable, then B is undecidable

"Good-news reduction"

To prove that language A is decidable, we need to build a TM D that decides it

If B is a decidable language, we can let R be a TM that decides B and use it as a subroutine in D

- D = "On input ___,
 - $oldsymbol{0}$ Using the input, construct some input for R
 - **2** Run R on that input (it's possible we need to use R multiple times)
 - **3** Make some decision to accept or reject based on the outcome of R"

Now we just need to prove that L(D) = A and that D is a decider

In this way, we have reduced A to B (i.e., $A \leq B$)

"Bad-news reduction"

To prove that language B is undecidable, we need to pick an undecidable language A and show that $A \leq B$

We start by assuming that B is decidable

Just as with the good-news reduction, we let ${\cal R}$ be a decider for ${\cal B}$ and use it as subroutine to construct a decider for ${\cal A}$

- $D = \text{"On input } _$,
 - f 0 Using the input, construct some input for R
 - **2** Run R on that input (it's possible we need to use R multiple times)
 - **3** Make some decision to *accept* or *reject* based on the outcome of R"

Now we just need to prove that L(D) = A and that D is a decider

Since A is undecidable and we were able to construct a decider for it, our assumption that B is decidable must be wrong

Good-news reductions we've already seen

- $A_{\mathsf{NFA}} \leq A_{\mathsf{DFA}}$
- $A_{\mathsf{REX}} \leq A_{\mathsf{NFA}}$
- $EQ_{\mathsf{DFA}} \leq E_{\mathsf{DFA}}$
- Every regular language $A \leq A_{\mathsf{DFA}}$
- $\bullet \ \ {\rm Every \ context-free \ language} \ A \leq A_{\rm CFG}$

Bad-news reductions we've already seen

- DIAG $\leq A_{\mathsf{TM}}$
- $A_{\mathsf{TM}} \leq \mathsf{HALT}_{\mathsf{TM}}$
- $A_{\mathsf{TM}} \leq E_{\mathsf{TM}}$

Let's prove that

$$EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$$

is undecidable

Let's perform a bad-news reduction from E_{TM}

Proof.

Assume that $EQ_{\rm TM}$ is decided by some TM R and build a TM to decide $E_{\rm TM}$: D = "On input $\langle M \rangle$,

Let's prove that

$$EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

is undecidable

Let's perform a bad-news reduction from E_{TM}

Proof.

Assume that $EQ_{\rm TM}$ is decided by some TM R and build a TM to decide $E_{\rm TM}$: D = "On input $\langle M \rangle$,

1 Construct TM M' such that $L(M') = \emptyset$

Let's prove that

$$EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

is undecidable

Let's perform a bad-news reduction from E_{TM}

Proof.

Assume that EQ_{TM} is decided by some TM R and build a TM to decide E_{TM} : D = "On input $\langle M \rangle$,

- **1** Construct TM M' such that $L(M') = \emptyset$
- **2** Run R on $\langle M, M' \rangle$

Let's prove that

$$EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

is undecidable

Let's perform a bad-news reduction from E_{TM}

Proof.

Assume that EQ_{TM} is decided by some TM R and build a TM to decide E_{TM} : D = "On input $\langle M \rangle$,

- **1** Construct TM M' such that $L(M') = \emptyset$
- **2** Run R on $\langle M, M' \rangle$
- 3 If R accepts, then accept; otherwise reject"

Since R is a decider, D is a decider

Clearly D accepts $\langle M \rangle$ iff R accepts $\langle M, M' \rangle$ iff $L(M) = \emptyset$ so $L(D) = E_{\mathsf{TM}}$

Prove that if A is decidable and B is regular, then $A \leq B$ How do we do this? Try to prove it

Prove that if A is decidable and B is regular, then $A \leq B$ How do we do this? Try to prove it

Hint: You want to prove that the logical proposition "B is decidable implies A is decidable" is true

Prove that if A is decidable and B is regular, then $A \leq B$ How do we do this? Try to prove it

Hint: You want to prove that the logical proposition "B is decidable implies A is decidable" is true

Hint 2: The proposition $P \implies true$ is true

Prove that if A is decidable and B is regular, then $A \leq B$ How do we do this? Try to prove it

Hint: You want to prove that the logical proposition "B is decidable implies A is decidable" is true

Hint 2: The proposition $P \implies true$ is true

Proof.

Since A is decidable, then the implication "B is decidable implies A is decidable" is always true.

More general statement: If A is decidable and B is arbitrary, then $A \leq B$. Same proof.

Checking if the language of a TM is regular

Theorem

 $Regular_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable To prove this, we want to perform a bad-news reduction from some undecidable language

A useful technique for languages involving properties of languages of TMs (here the property is that the language is regular) involves reducing from $A_{\rm TM}$

Given a TM M and a string w, we want to construct a new TM M' such that the language of M' is regular if $w \in L(M)$ and is nonregular if $w \notin L(M)$

Let's construct a TM whose language is $\{0,1\}^*$ if $w \in L(M)$ and is $\{0^n1^n \mid n \ge 0\}$ if $w \notin L(M)$

Proof.

Assume that REGULAR_{TM} is decided by some TM R. Build D to decide A_{TM} D = "On input $\langle M, w \rangle$,

- ① Construct a new TM M' = "On input x,
 - **1** If $x = 0^n 1^n$ for some n, accept
 - 2 Otherwise, run M on w and if M accepts, accept; otherwise reject"
- **2** Run R on $\langle M' \rangle$ and if R accepts, then accept; otherwise reject"

Let's construct a TM whose language is $\{0,1\}^*$ if $w \in L(M)$ and is $\{0^n1^n \mid n \ge 0\}$ if $w \notin L(M)$

Proof.

Assume that REGULAR_{TM} is decided by some TM R. Build D to decide A_{TM} D = "On input $\langle M, w \rangle$,

- ① Construct a new TM M' = "On input x,
 - **1** If $x = 0^n 1^n$ for some n, accept
 - 2 Otherwise, run M on w and if M accepts, accept; otherwise reject"
- **2** Run R on $\langle M' \rangle$ and if R accepts, then accept; otherwise reject"

We need to show that D is a decider and we need to show that $L(D) = A_{\mathsf{TM}}$

Why is D a decider?

Let's construct a TM whose language is $\{0,1\}^*$ if $w \in L(M)$ and is $\{0^n1^n \mid n \ge 0\}$ if $w \notin L(M)$

Proof.

Assume that REGULAR_{TM} is decided by some TM R. Build D to decide A_{TM} D = "On input $\langle M, w \rangle$,

- ① Construct a new TM M' = "On input x,
 - 1 If $x = 0^n 1^n$ for some n, accept
 - 2 Otherwise, run M on w and if M accepts, accept; otherwise reject"
- **2** Run R on $\langle M' \rangle$ and if R accepts, then accept; otherwise reject"

We need to show that D is a decider and we need to show that $L(D) = A_{\mathsf{TM}}$

Why is D a decider? Note that we never $\operatorname{run} M'$. All D does is $\operatorname{construct}$ a new TM and then run a decider on its representation

Let's construct a TM whose language is $\{0,1\}^*$ if $w \in L(M)$ and is $\{0^n1^n \mid n \ge 0\}$ if $w \notin L(M)$

Proof.

Assume that REGULAR_{TM} is decided by some TM R. Build D to decide A_{TM} D = "On input $\langle M, w \rangle$,

- **1** Construct a new TM M' = "On input x,
 - **1** If $x = 0^n 1^n$ for some n, accept
 - $oldsymbol{2}$ Otherwise, run M on w and if M accepts, accept; otherwise reject"
- **2** Run R on $\langle M' \rangle$ and if R accepts, then accept; otherwise reject"

We need to show that D is a decider and we need to show that $L(D) = A_{\mathsf{TM}}$

Why is D a decider? Note that we never $\operatorname{run} M'$. All D does is $\operatorname{construct}$ a new TM and then run a decider on its representation

If $w \in L(M)$, then $L(M') = \{0,1\}^*$ which is regular so R and D accept. If $w \notin L(M)$, then L(M') is not regular so R and D reject. Thus $L(D) = A_{\mathsf{TM}}$

ALL_{CFG} is undecidable

Theorem

 $ALL_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$ is undecidable.

Proof idea.

We want to reduce from A_{TM}

Given a TM M and a string w, we want to construct a CFG G such that if $w \in L(M)$, then G fails to generate some string and if $w \notin L(M)$, then $L(G) = \Sigma^*$

The string that G should fail to generate is an accepting computation of M on w

Recall, a configuration C of a TM is a string C=uqv where $u\in\Gamma^*$ is the tape to the left of the tape head, $q\in Q$ is the current state, and $v\in\Gamma^*$ is the nonblank portion of the tape below and to the right of the tape head

Proof idea continued

An accepting computation is a sequence of configurations C_1, C_2, \ldots, C_n such that

- **1** $C_1 = q_0 w$ is the initial configuration (where w is the input)
- 2 C_i follows from C_{i-1} according to the TM's transition; i.e., C_i is the same as C_{i-1} except for the symbols right around the states
- **3** $C_n = uq_{\mathsf{accept}}v$ for some $u, v \in \Gamma^*$

We want to create a CFG G that generates all strings except for the string $h = \#C_1 \#C_2^{\mathcal{R}} \#\cdots \#C_n \#$ where C_1, C_2, \ldots, C_n is an accepting computation of M on w

For technical reasons, we need every other C_i to be reversed

$$h = \# \underbrace{\longrightarrow}_{C_1} \# \underbrace{\longleftarrow}_{C_2^{\mathcal{R}}} \# \underbrace{\longrightarrow}_{C_3} \# \underbrace{\longleftarrow}_{C_4^{\mathcal{R}}} \# \cdots \# \underbrace{\longrightarrow}_{C_n} \#$$

If $w \notin L(M)$, then no such accepting computation exists and $L(G) = \Sigma^*$

If
$$w \in L(M)$$
, then $L(G) = \Sigma^* \setminus \{h\}$

Proof idea continued

Rather than construct a CFG directly, we can construct a PDA ${\cal P}$ and then convert it to a CFG ${\cal G}$

P should nondeterministically (i.e., using ε -transitions) check that one of the three conditions does not hold:

- If C_1 is not the initial configuration (which is hard coded into P), accept; otherwise reject
- **2** If C_i does not follow from C_{i-1} , accept; otherwise reject

Condition 1 is easy to check: this branch of the PDA just checks that the input does not start with $\#q_0w\#$

Condition 3 is likewise easy: this branch of the PDA just checks that the state that appears before the final # is not $q_{\rm accept}$

Proof idea continued

Condition 2 is the hard one. P will nondeterministically pick a configuration C_i to check if it follows from C_{i-1}

P will push C_{i-1} onto its stack (or $C_{i-1}^{\mathcal{R}}$, depending on i being odd or even)

Then P will match C_i (or $C_i^{\mathcal{R}}$) by popping the stack. The symbols around the states and the states themselves need to change according to M's transition function (this is the slightly tricky part)

This branch rejects if C_i properly follows from C_{i-1} and accepts otherwise

Proof.

Assume ALL_{CFG} is decided by TM R and construct TM D to decide A_{TM} : D = "On input $\langle M, w \rangle$,

- f 1 Construct PDA P based on M and w
- **2** Convert P to an equivalent CFG G
- **3** Run R on $\langle G \rangle$ and if R rejects, accept; otherwise reject"

None of constructing the PDA, converting to a CFG, and running a decider loop so ${\cal D}$ is a decider

If $w \in L(M)$, then P rejects the string corresponding to the accepting computation so $L(G) \neq \Sigma^*$. Therefore, R rejects and D accepts

If $w \notin L(M)$, then P accepts every string so $L(G) = \Sigma^*$ and R accepts and D rejects

Since A_{TM} is undecidable and D decides it, our assumption must be wrong and ALL_{CFG} is undecidable

$EQ_{\rm CFG}$ is undecidable

Homework: Prove that EQ_{CFG} is undecidable

Reduce from ALL_{CFG}