CS 383

Lecture 13 - Closure properties of context-free languages

Stephen Checkoway

Spring 2024

CFLs and PDAs

Theorem

Every context-free language can be recognized by some PDA.

Proof idea.

- **1** Use the PDA's stack to perform a left-most derivation of a word in the language
- **2** Match the PDA's input symbols against the stack, popping each one
- 3 Accept if stack is empty when there's no more input

Consider the language $A = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ is not a palindrome}\}$ What CFG generates that language?

Consider the language $A = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ is not a palindrome}\}$ What CFG generates that language?

```
S \rightarrow aSa \mid bSb \mid aTb \mid bTaT \rightarrow aT \mid bT \mid \varepsilon
```

Consider the language $A = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ is not a palindrome}\}$ What CFG generates that language?

$$\begin{split} S &\to \mathbf{a} S \mathbf{a} \mid \mathbf{b} S \mathbf{b} \mid \mathbf{a} T \mathbf{b} \mid \mathbf{b} T \mathbf{a} \\ T &\to \mathbf{a} T \mid \mathbf{b} T \mid \varepsilon \end{split}$$

A left-most derivation of the string abaaa is

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa.$

We want to start by pushing S on the stack, then performing the derivation step by step so that abaaa ends on the stack, and then match the input

Consider the language $A = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ is not a palindrome}\}$ What CFG generates that language?

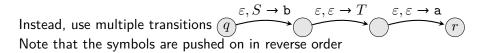
```
S \rightarrow aSa \mid bSb \mid aTb \mid bTa
T \rightarrow aT \mid bT \mid \varepsilon
```

A left-most derivation of the string abaaa is

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa.$

We want to start by pushing S on the stack, then performing the derivation step by step so that abaaa ends on the stack, and then match the input

There are two complications


- **1** The first step in the derivation $S \Rightarrow aSa$ requires popping one symbol and pushing three
- 2 We can only replace symbols at the top of the stack

Pushing multiple symbols

We would like to write a transition like qbut $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ doesn't allow that

Pushing multiple symbols

We would like to write a transition like qbut $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ doesn't allow that

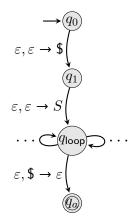
We can only replace symbols at the top of the stack

Rather than first deriving the whole string on the stack and then matching the input,

• If the top of the stack is a terminal, match it to the next input symbol

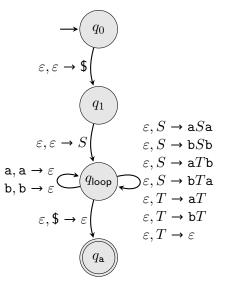
 $\xrightarrow{t, t \to \varepsilon} for each t \in \Sigma$

• If the top of the stack is a variable, replace it with the RHS of a corresponding rule


We can only replace symbols at the top of the stack

Rather than first deriving the whole string on the stack and then matching the input,

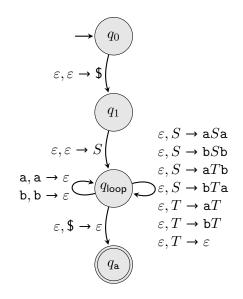
- If the top of the stack is a terminal, match it to the next input symbol $t, t \to \varepsilon$ for each $t \in \Sigma$
- If the top of the stack is a variable, replace it with the RHS of a corresponding rule


In fact, we only need four main states plus any additional states necessary to push multiple symbols

The $q_{\rm loop}$ state is where all the real work happens

Example

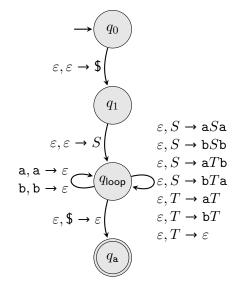
- $$\begin{split} S &\to \mathbf{a} S \mathbf{a} \mid \mathbf{b} S \mathbf{b} \mid \mathbf{a} T \mathbf{b} \mid \mathbf{b} T \mathbf{a} \\ T &\to \mathbf{a} T \mid \mathbf{b} T \mid \varepsilon \end{split}$$
- For each $t \in \Sigma$, add the transition $t, t \rightarrow \varepsilon$ from q_{loop} to q_{loop}
- Por each rule A → u₁u₂…u_n for u_i ∈ V ∪ Σ, add n − 1 new states (if n > 1) and transitions to pop A and push u₁, u₂,..., u_n on in reverse order



[The rules on the right need 10 extra states to make this a proper PDA]

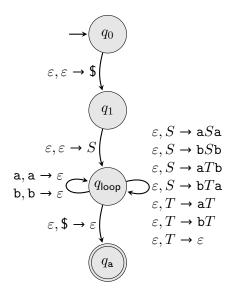
Consider running the PDA on the input abaaa. The stack is shown on the right after each step

\$


1 push \$;

Consider running the PDA on the input abaaa. The stack is shown on the right after each step

- **1** push \$;
- 2 push S;


\$ *S*\$

Consider running the PDA on the input abaaa. The stack is shown on the right after each step

- push \$;
 push \$;
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
- **3** pop S, push aSa;

aSa\$

Consider running the PDA on the input abaaa. The stack is shown on the right after each step

- 1 push \$;
- 2 push S; S

\$

aSa

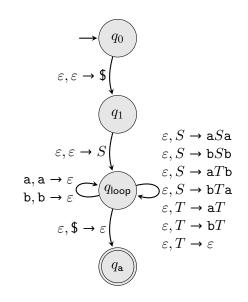
Sa

- **3** pop S, push aSa;
- 4 read and pop a;

 q_0 $\varepsilon, \varepsilon \rightarrow$ q_1 $\varepsilon,S \to \mathbf{a}S\mathbf{a}$ $\varepsilon,S \to \mathbf{b}S\mathbf{b}$ $\varepsilon, \varepsilon \rightarrow$ $\varepsilon, S \rightarrow aTb$ $\mathtt{a},\mathtt{a} \to \varepsilon$ q_{loop} $\varepsilon, S \rightarrow bTa$ $\varepsilon, T \rightarrow \mathbf{a}T$ $\begin{array}{l} \varepsilon,T \rightarrow \mathbf{b}T\\ \varepsilon,T \rightarrow \varepsilon \end{array}$ $\varepsilon, \$ \rightarrow$ q_{a}

Consider running the PDA on the input abaaa. The stack is shown on the right after each step

- 1 push \$;
- 2 push S; S


\$

aSa

Sa

bTaa\$

- **3** pop S, push aSa;
- 4 read and pop a;
- **5** pop S, push bTa;

Consider running the PDA on the input abaaa. The stack is shown on the right after each step

- 1 push \$;
- 2 push S; S

\$

aSa

Sa

bTaa\$

Taa\$

- f 3 pop S, push aSa;
- 4 read and pop a;
- **5** pop S, push bTa;
- **6** read and pop b;

 q_0 $\varepsilon, \varepsilon \rightarrow$ q_1 $\varepsilon, S \rightarrow aSa$ $\varepsilon, \varepsilon \rightarrow$ $\varepsilon, S \rightarrow \mathbf{b}S\mathbf{b}$ $\varepsilon, S \rightarrow aTb$ $\mathtt{a}, \mathtt{a} \to \varepsilon$ $\varepsilon, S \rightarrow bTa$ q_{loop} $\varepsilon, T \rightarrow \mathbf{a}T$ $\varepsilon,T \to \mathrm{b} T$ $\varepsilon, \$ \rightarrow$ $\varepsilon, T \rightarrow \varepsilon$ q_{a}

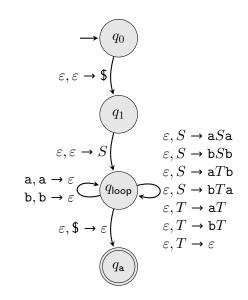
Consider running the PDA on the input abaaa. The stack is shown on the right after each step

• push \$;

\$

aSa

Sa


bTaa\$

Taa\$

aTaa\$

- 2 push S; S\$
- **3** pop S, push aSa;
- 4 read and pop a;
- **5** pop S, push bTa;
- 6 read and pop b;

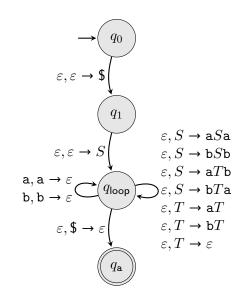
7 pop T, push aT;

Consider running the PDA on the input abaaa. The stack is shown on the right after each step

1 push \$; S

\$

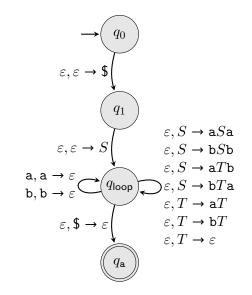
Sa


bTaa\$

Taa\$

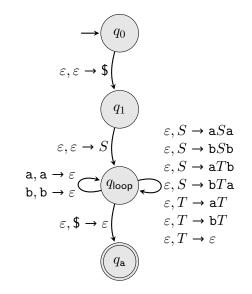
aTaa\$

Taa\$


- **2** push S; aSa
- **3** pop S, push aSa;
- 4 read and pop a;
- **5** pop S, push bTa;
- 6 read and pop b;
- \bigcirc pop T, push aT;
- 8 read and pop a;

Consider running the PDA on the input abaaa. The stack is shown on the right after each step

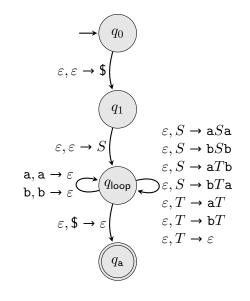
\$


1 push \$; S**2** push S; **3** pop S, push aSa; aSa4 read and pop a; Sa**5** pop S, push bTa; bTaa\$ 6 read and pop b; Taa\$ \bigcirc pop T, push aT; aTaa\$ 8 read and pop a; Taa\$ **9** pop T, push ε ; aa\$

Consider running the PDA on the input abaaa. The stack is shown on the right after each step

\$

1 push \$; S**2** push S; **3** pop S, push aSa; aSa4 read and pop a; Sa**5** pop S, push bTa; bTaa\$ 6 read and pop b; Taa\$ \bigcirc pop T, push aT; aTaa\$ 8 read and pop a; Taa\$ **9** pop T, push ε ; aa\$ a\$ **(**) read and pop a;



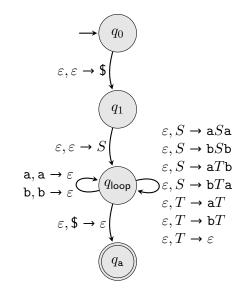
Consider running the PDA on the input abaaa. The stack is shown on the right after each step

\$

\$

1 push \$; **2** push S; S**3** pop S, push aSa; aSa4 read and pop a; Sa**5** pop S, push bTa; bTaa\$ 6 read and pop b; Taa\$ \bigcirc pop T, push aT; aTaa\$ 8 read and pop a; Taa\$ **9** pop T, push ε ; aa\$ a\$ (1) read and pop a; I read and pop a;

Consider running the PDA on the input abaaa. The stack is shown on the right after each step


\$

a\$

\$

ε

1 push \$; **2** push S; S**3** pop S, push aSa; aSa4 read and pop a; Sa**5** pop S, push bTa; bTaa\$ 6 read and pop b; Taa\$ \bigcirc pop T, push aT; aTaa\$ 8 read and pop a; Taa\$ aa\$ **9** pop T, push ε ; (1) read and pop a; read and pop a; pop \$ and accept;

Proof.

Let A be a CFL generated by a CFG $G = (V, \Sigma, R, S)$.

Proof.

Let A be a CFL generated by a CFG $G = (V, \Sigma, R, S)$.

Construct the PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, \{q_a\})$ with states $Q = \{q_0, q_1, q_{\text{loop}}, q_a\} \cup E$ where E are the extra states we need for each rule and $\Gamma = V \cup \Sigma \cup \{\$\}$.

Proof.

Let A be a CFL generated by a CFG $G = (V, \Sigma, R, S)$.

Construct the PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, \{q_a\})$ with states $Q = \{q_0, q_1, q_{\text{loop}}, q_a\} \cup E$ where E are the extra states we need for each rule and $\Gamma = V \cup \Sigma \cup \{\$\}$.

Start with the transitions

$$\begin{split} \varepsilon, \varepsilon &\to \$ \text{ from } q_0 \text{ to } q_1, \\ \varepsilon, \varepsilon &\to S \text{ from } q_1 \text{ to } q_{\text{loop}}, \text{ and} \\ \varepsilon, \$ &\to \varepsilon \text{ from } q_{\text{loop}} \text{ to } q_a \end{split}$$

Proof.

Let A be a CFL generated by a CFG $G = (V, \Sigma, R, S)$.

Construct the PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, \{q_a\})$ with states $Q = \{q_0, q_1, q_{\text{loop}}, q_a\} \cup E$ where E are the extra states we need for each rule and $\Gamma = V \cup \Sigma \cup \{\$\}$.

Start with the transitions

$$\begin{split} \varepsilon, \varepsilon &\to \$ \text{ from } q_0 \text{ to } q_1, \\ \varepsilon, \varepsilon &\to S \text{ from } q_1 \text{ to } q_{\text{loop}}, \text{ and} \\ \varepsilon, \$ &\to \varepsilon \text{ from } q_{\text{loop}} \text{ to } q_a \end{split}$$

For each $t \in \Sigma$, add the transition $t, t \to \varepsilon$ from q_{loop} to q_{loop} .

Proof.

Let A be a CFL generated by a CFG $G = (V, \Sigma, R, S)$.

Construct the PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, \{q_a\})$ with states $Q = \{q_0, q_1, q_{\text{loop}}, q_a\} \cup E$ where E are the extra states we need for each rule and $\Gamma = V \cup \Sigma \cup \{\$\}$.

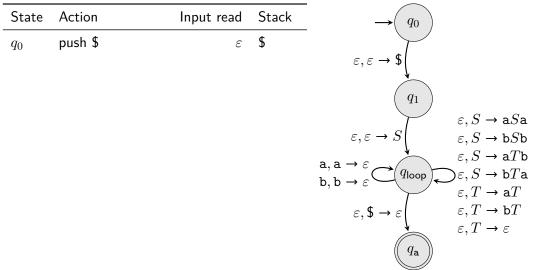
Start with the transitions

$$\begin{split} &\varepsilon,\varepsilon \to \$ \text{ from } q_0 \text{ to } q_1,\\ &\varepsilon,\varepsilon \to S \text{ from } q_1 \text{ to } q_{\text{loop}} \text{, and}\\ &\varepsilon,\$ \to \varepsilon \text{ from } q_{\text{loop}} \text{ to } q_a \end{split}$$

For each $t \in \Sigma$, add the transition $t, t \to \varepsilon$ from q_{loop} to q_{loop} .

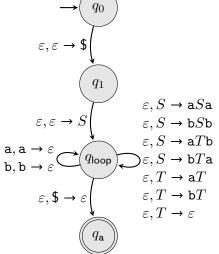
For each rule $A \rightarrow u$ add the states and transitions necessary to pop A and push u in reverse order from q_{loop} to q_{loop} .

Proof continued

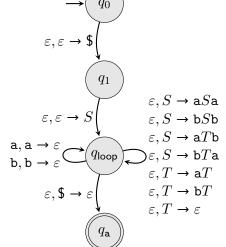

Consider running M on input $w = w_1 w_2 \cdots w_n$ for $w_i \in \Sigma$.

The first time M enters state q_{loop} , the stack is S and no input has been read.

Every subsequent time it enters q_{loop} , the input read so far concatenated with the stack is a step in some left-most derivation of w (followed by a \$).


I.e., if k symbols have been read from the input and the stack is s, then $w_1w_2\cdots w_ks$ is a step in the derivation of w

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$


 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack
q_0	push \$	arepsilon	\$
q_1	push S	ε	S

 $S \Rightarrow \mathbf{a}S\mathbf{a} \Rightarrow \mathbf{a}bT\mathbf{a}\mathbf{a} \Rightarrow \mathbf{a}\mathbf{b}aT\mathbf{a}\mathbf{a} \Rightarrow \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}$

State	Action	Input read	Stack
q_0	push \$	ε	\$
q_1	push S	ε	S
q_{loop}	pop S , push a S a	ε	aSa\$

_

 $S \Rightarrow \mathbf{a}S\mathbf{a} \Rightarrow \mathbf{a}bT\mathbf{a}\mathbf{a} \Rightarrow \mathbf{a}\mathbf{b}a\mathbf{a}\mathbf{a}$

				~	
State	Action	Input read	Stack	$\rightarrow q_0$	
q_0	push \$	ε	\$		
q_1	push S	ε	S	$\varepsilon, \varepsilon \to \$$	
q_{loop}	pop S , push a S a	ε	a S a $\$$	•	
q_{loop}	read and pop a	a	Sa	$\begin{pmatrix} q_1 \end{pmatrix}$	
				$\varepsilon, S \rightarrow$	a
				$\varepsilon, \varepsilon \to S$ $\varepsilon, S \to$	b
					a′
				$\begin{array}{c} \mathbf{a}, \mathbf{a} \to \varepsilon \\ \mathbf{b}, \mathbf{b} \to \varepsilon \end{array} \qquad \qquad$	b′
				$\varepsilon, \tau \to \varepsilon, \tau \to 0$	a
				$\varepsilon, \$ \to \varepsilon \qquad \varepsilon, T \to$	b.
				$\varepsilon, T \rightarrow$	ε

1a

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	$\rightarrow q_0$
q_0	push \$	ε	\$	
q_1	push S	ε	S	$\varepsilon, \varepsilon \rightarrow \$$
q_{loop}	pop S , push a S a	ε	a S a $\$$	L Contraction of the second se
q_{loop}	read and pop a	a	Sa	$\left(\begin{array}{c} q_1 \end{array} \right)$
q_{loop}	pop S , push b T a	a	b T aa $\$$	$\varepsilon, S \rightarrow aSa$
				$\varepsilon, \varepsilon \to S$ $\varepsilon, S \to bSb$
				$\epsilon, S \to aTb$
				$\begin{array}{c} \mathbf{a}, \mathbf{a} \to \varepsilon \\ \mathbf{b}, \mathbf{b} \to \varepsilon \end{array} \qquad \qquad$
				$\varepsilon, T \to aT$
				$\varepsilon, \$ \to \varepsilon \qquad \varepsilon, T \to bT$
				$\varepsilon, T \to \varepsilon$

 q_{a}

_

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	$\rightarrow q_0$
q_0	push \$	ε	\$	
q_1	push S	ε	S	$\varepsilon, \varepsilon \to \$$
q_{loop}	pop S , push a S a	ε	a S a $\$$	
q_{loop}	read and pop a	a	Sa\$	$\left(\begin{array}{c} q_1 \end{array} \right)$
q_{loop}	pop S , push b T a	a	b T aa $\$$	$\varepsilon, S \rightarrow aSa$
q_{loop}	read and pop b	ab	Taa\$	$\varepsilon, \varepsilon \to S$ $\varepsilon, S \to bSb$
				$\varepsilon, S \to aTb$
				$\begin{array}{c} \mathbf{a}, \mathbf{a} \to \varepsilon \\ \mathbf{b}, \mathbf{b} \to \varepsilon \end{array} \qquad \qquad$
				$\varepsilon, \sigma \to aT$
				$\varepsilon, \$ \to \varepsilon $ $\varepsilon, T \to bT$
				$\varepsilon, T \to \varepsilon$

 $q_{\mathtt{a}}$

_

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	$\rightarrow q_0$
q_0	push \$	ε	\$	
q_1	push S	ε	S	$\varepsilon, \varepsilon \to \$$
q_{loop}	pop S , push a S a	ε	a S a $\$$	
q_{loop}	read and pop a	a	Sa	$\begin{pmatrix} q_1 \end{pmatrix}$
q_{loop}	pop S , push b T a	a	b T aa $\$$	$\varepsilon, S \rightarrow aSa$
q_{loop}	read and pop b	ab	Taa	$\varepsilon, \varepsilon \to S$ $\varepsilon, S \to bSb$
q_{loop}	pop T , push a T	ab	aTaa\$	$\bigvee \epsilon S \to aTh$
				$\begin{array}{c} \mathbf{a}, \mathbf{a} \to \varepsilon \\ \mathbf{b}, \mathbf{b} \to \varepsilon \end{array} \qquad \qquad$
				$\mathbf{b}, \mathbf{b} \to \varepsilon \qquad \qquad$
				$\varepsilon, \$ \to \varepsilon $ $\varepsilon, T \to bT$
				$\varepsilon, \bullet \qquad \varepsilon, T \to \varepsilon$
				qa

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	$\rightarrow q_0$
q_0	push \$	ε	\$	
q_1	push S	ε	S	$\varepsilon, \varepsilon \rightarrow \$$
q_{loop}	pop S , push a S a	ε	a S a $\$$	V
q_{loop}	read and pop a	a	Sa	$\begin{pmatrix} q_1 \end{pmatrix}$
q_{loop}	pop S , push b T a	a	b T aa $\$$	$\varepsilon, S \rightarrow aSa$
q_{loop}	read and pop b	ab	Taa	$\varepsilon, \varepsilon \to S \Big(\begin{array}{c} \varepsilon, \varepsilon & -\mathbf{b} \\ \varepsilon, S \to \mathbf{b} S \mathbf{b} \end{array} \Big)$
q_{loop}	pop T , push a T	ab	a T aa $\$$	$\epsilon S \rightarrow aTh$
q_{loop}	read and pop a	aba	Taa\$	$\begin{array}{c} \mathbf{a}, \mathbf{a} \to \varepsilon \\ \mathbf{b}, \mathbf{b} \to \varepsilon \end{array} \qquad \qquad$
				$\mathbf{b}, \mathbf{b} \to \varepsilon \qquad \qquad$
				$\varepsilon, \$ \to \varepsilon $ $\varepsilon, T \to bT$
				$\varepsilon, T \to \varepsilon$
				$\left(\begin{array}{c} q_{a} \end{array} \right)$

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	$\rightarrow q_0$
q_0	push \$	ε	\$	
q_1	push S	ε	S	$\varepsilon, \varepsilon \rightarrow \$$
q_{loop}	pop S , push a S a	ε	a S a $\$$	
q_{loop}	read and pop a	a	Sa	$\begin{pmatrix} q_1 \end{pmatrix}$
q_{loop}	pop S , push b T a	a	b T aa $\$$	$\varepsilon, S \rightarrow aSa$
q_{loop}	read and pop b	ab	Taa	$\varepsilon, \varepsilon \to S \left(\begin{array}{c} \varepsilon, \varepsilon \\ \varepsilon, S \to \mathbf{b}S\mathbf{b} \end{array} \right)$
q_{loop}	pop T , push a T	ab	a T aa $\$$	$\epsilon S \rightarrow aTh$
q_{loop}	read and pop a	aba	Taa	$\begin{array}{c} \mathbf{a}, \mathbf{a} \to \varepsilon \\ \mathbf{b}, \mathbf{b} \to \varepsilon \end{array} \qquad \qquad$
q_{loop}	pop T , push $arepsilon$	aba	aa\$	$\mathbf{b}, \mathbf{b} \to \varepsilon \qquad \qquad$
				$\varepsilon, \$ \to \varepsilon$ $\varepsilon, T \to bT$
				$\varepsilon, T \to \varepsilon$
				$\left(\begin{array}{c} q_{a} \end{array}\right)$

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	$\rightarrow q_0$	
q_0	push \$	ε	\$		
q_1	push S	ε	S	$\varepsilon, \varepsilon \rightarrow $	
lloop	pop S , push a S a	ε	a S a $\$$	1	
loop	read and pop a	а	Sa	$\begin{pmatrix} q_1 \end{pmatrix}$	
(loop	pop S , push b T a	а	b T aa $\$$	\bigvee	$\varepsilon, S \rightarrow$
loop	read and pop b	ab	Taa	$\varepsilon, \varepsilon \to S$	$\varepsilon, \varepsilon \to$
loop	pop T , push a T	ab	a T aa $\$$	1 L	$\varepsilon, \varepsilon \to$
loop	read and pop a	aba	Taa	$\begin{array}{c} \mathbf{a}, \mathbf{a} \to \varepsilon \\ \mathbf{b}, \mathbf{b} \to \varepsilon \end{array} \qquad \qquad$	$\Sigma \varepsilon, S \to$
loop	pop T , push $arepsilon$	aba	aa\$	$b, b \rightarrow \varepsilon$	$\varepsilon, T \rightarrow$
lloop	read and pop a	abaa	a\$	$\varepsilon, \$ \rightarrow \varepsilon$	$\varepsilon, T \rightarrow \varepsilon, T$
				, M	$\varepsilon,T \twoheadrightarrow$

 q_{a}

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	-
q_0	push \$	ε	\$	
q_1	push S	ε	S	arepsilon,arepsilon -
q_{loop}	pop S , push a S a	ε	aSa\$	
q_{loop}	read and pop a	a	Sa	
q_{loop}	pop S , push b T a	a	b T aa $\$$	
q_{loop}	read and pop b	ab	Taa $$$	$\varepsilon, \varepsilon \rightarrow$
q_{loop}	pop T , push a T	ab	a T aa $\$$	
q_{loop}	read and pop a	aba	Taa $$$	$a, a \to \varepsilon \\ b, b \to \varepsilon $
q_{loop}	pop T , push $arepsilon$	aba	aa\$	$b, b \rightarrow \varepsilon \smile$
q_{loop}	read and pop a	abaa	a\$	<i>ε</i> , \$ →
q_{loop}	read and pop a	abaaa	\$	€,♥

 q_{a}

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	$\rightarrow q_0$
q_0	push \$	ε	\$	
q_1	push S	ε	S	$\varepsilon, \varepsilon \rightarrow \$$
q_{loop}	pop S , push a S a	ε	a S a $\$$	
q_{loop}	read and pop a	a	Sa	$\begin{pmatrix} q_1 \end{pmatrix}$
q_{loop}	pop S , push b T a	a	b T aa $\$$	$\varepsilon, S \rightarrow a$
q_{loop}	read and pop b	ab	Taa	$\varepsilon, \varepsilon \to S \Big(\qquad \varepsilon, S \to b \Big)$
q_{loop}	pop T , push a T	ab	a T aa $\$$	$\sum_{i=1}^{n} \varepsilon(S \to a)$
q_{loop}	read and pop a	aba	Taa	$\begin{array}{c} \mathbf{a}, \mathbf{a} \to \varepsilon \\ \mathbf{b}, \mathbf{b} \to \varepsilon \end{array} \xrightarrow{\mathcal{C}} \left(q_{loop} \right) \xrightarrow{\mathcal{C}, S} \to \mathbf{b} \end{array}$
q_{loop}	pop T , push $arepsilon$	aba	aa\$	$b, b \rightarrow \varepsilon$ $\varepsilon, T \rightarrow a$
q_{loop}	read and pop a	abaa	a\$	$\varepsilon, \$ \to \varepsilon $ $\varepsilon, T \to t$
q_{loop}	read and pop a	abaaa	\$	$\varepsilon, \mathbf{J} \to \varepsilon \qquad \varepsilon, T \to \varepsilon$
qloop	pop\$	abaaa	ε	q_{a}

 $S \Rightarrow aSa \Rightarrow abTaa \Rightarrow abaTaa \Rightarrow abaaa$

State	Action	Input read	Stack	$\rightarrow q_0$
q_0	push \$	ε	\$	
q_1	push S	ε	S	$\varepsilon, \varepsilon \to \$$
q_{loop}	pop S , push a S a	ε	a S a $\$$	•
q_{loop}	read and pop a	a	Sa	$\begin{pmatrix} q_1 \end{pmatrix}$
q_{loop}	pop S , push b T a	a	b T aa $\$$	$\varepsilon, S \rightarrow aSa$
q_{loop}	read and pop b	ab	Taa	$\varepsilon, \varepsilon \to S \left(\begin{array}{c} \varepsilon, \varepsilon \\ \varepsilon, S \\ \varepsilon, S$
q_{loop}	pop T , push a T	ab	a T aa	$\epsilon S \rightarrow aTh$
q_{loop}	read and pop a	aba	Taa	$a, a \rightarrow \varepsilon \qquad \qquad$
q_{loop}	pop T , push $arepsilon$	aba	aa\$	$\mathbf{b}, \mathbf{b} \to \varepsilon \xrightarrow{qloop} \overbrace{\varepsilon, T \to \mathbf{a}T}^{\varepsilon, S \to \mathbf{b}T \mathbf{a}}$
q_{loop}	read and pop a	abaa	a\$	$\varepsilon, \$ \to \varepsilon $ $\varepsilon, T \to bT$
q_{loop}	read and pop a	abaaa	\$	$\varepsilon, \psi \to \varepsilon \qquad \varepsilon, T \to \varepsilon$
q_{loop}	pop\$	abaaa	ε	
q_{a}	accept	abaaa	ε	q_{a}

10/18

Back from example

Consider running M on input $w = w_1 w_2 \cdots w_n$ for $w_i \in \Sigma$.

The first time M enters state q_{loop} , the stack is S and no input has been read.

Every subsequent time it enters q_{loop} , the input read so far concatenated with the stack is a step in some left-most derivation of w (followed by a \$).

I.e., if k symbols have been read from the input and the stack is s, then $w_1w_2\cdots w_ks$ is a step in the derivation of w

Back from example

Consider running M on input $w = w_1 w_2 \cdots w_n$ for $w_i \in \Sigma$.

The first time M enters state q_{loop} , the stack is S and no input has been read.

Every subsequent time it enters q_{loop} , the input read so far concatenated with the stack is a step in some left-most derivation of w (followed by a \$).

I.e., if k symbols have been read from the input and the stack is s, then $w_1w_2\cdots w_ks$ is a step in the derivation of w

M accepts w once the derivation is complete and all terminals have been matched. Therefore, each string accepted by M is in A.

Back from example

Consider running M on input $w = w_1 w_2 \cdots w_n$ for $w_i \in \Sigma$.

The first time M enters state q_{loop} , the stack is S and no input has been read.

Every subsequent time it enters q_{loop} , the input read so far concatenated with the stack is a step in some left-most derivation of w (followed by a \$).

I.e., if k symbols have been read from the input and the stack is s, then $w_1w_2\cdots w_ks$ is a step in the derivation of w

M accepts w once the derivation is complete and all terminals have been matched. Therefore, each string accepted by M is in A.

For each $w \in A$, there is some left-most derivation of w by G. By construction, M performs the derivation on the stack while matching leading terminals.

Thus L(M) = A.

Theorem If a language is recognized by a PDA, then it is context-free. Proof idea.

Theorem

If a language is recognized by a PDA, then it is context-free.

Proof idea.

- **1** First, convert the PDA to one that
 - has a single accepting state q_a;
 - empties its stack before accepting; and
 - either pushes a symbol or pops a symbol, but not both, on each transition

Theorem

If a language is recognized by a PDA, then it is context-free.

Proof idea.

- 1 First, convert the PDA to one that
 - has a single accepting state q_a;
 - empties its stack before accepting; and
 - either pushes a symbol or pops a symbol, but not both, on each transition
- 2 Next, construct a CFG that
 - has variables that are pairs of states $\langle q, r \rangle$ from the PDA;
 - has start variable $\langle q_0, q_a \rangle$;
 - has rules $\langle q,q\rangle \rightarrow \varepsilon$ for each $q \in Q$;
 - has rules $\langle p,r
 angle
 ightarrow \langle p,q
 angle \langle q,r
 angle$ for each $p,q,r\in Q$; and
 - has rules $\langle p,q \rangle \to a \langle r,s \rangle b$ for $p,q,r,s \in Q$ and $a,b \in \Sigma_{\varepsilon}$ if $(r,u) \in \delta(p,a,\varepsilon)$ and $(q,\varepsilon) \in \delta(s,b,u)$

Theorem

If a language is recognized by a PDA, then it is context-free.

Proof idea.

- 1 First, convert the PDA to one that
 - has a single accepting state q_a;
 - empties its stack before accepting; and
 - either pushes a symbol or pops a symbol, but not both, on each transition
- 2 Next, construct a CFG that
 - has variables that are pairs of states $\langle q, r \rangle$ from the PDA;
 - has start variable $\langle q_0, q_a \rangle$;
 - has rules $\langle q,q\rangle \rightarrow \varepsilon$ for each $q \in Q$;
 - has rules $\langle p,r\rangle \to \langle p,q\rangle \langle q,r\rangle$ for each $p,q,r\in Q;$ and
 - has rules $\langle p,q \rangle \to a \langle r,s \rangle b$ for $p,q,r,s \in Q$ and $a,b \in \Sigma_{\varepsilon}$ if $(r,u) \in \delta(p,a,\varepsilon)$ and $(q,\varepsilon) \in \delta(s,b,u)$
- S Prove (by induction) that each variable ⟨q, r⟩ has the property ⟨q, r⟩ ⇒ x ∈ Σ* iff starting M in state q with an empty stack and running on input x causes M to move to state r and end with an empty stack

Theorem

If a language is recognized by a PDA, then it is context-free.

Proof idea.

- 1 First, convert the PDA to one that
 - has a single accepting state q_a;
 - empties its stack before accepting; and
 - either pushes a symbol or pops a symbol, but not both, on each transition
- 2 Next, construct a CFG that
 - has variables that are pairs of states $\langle q, r \rangle$ from the PDA;
 - has start variable $\langle q_0, q_a \rangle$;
 - has rules $\langle q,q\rangle \rightarrow \varepsilon$ for each $q \in Q$;
 - has rules $\langle p,r\rangle \to \langle p,q\rangle \langle q,r\rangle$ for each $p,q,r\in Q;$ and
 - has rules $\langle p,q \rangle \to a \langle r,s \rangle b$ for $p,q,r,s \in Q$ and $a,b \in \Sigma_{\varepsilon}$ if $(r,u) \in \delta(p,a,\varepsilon)$ and $(q,\varepsilon) \in \delta(s,b,u)$
- **3** Prove (by induction) that each variable $\langle q, r \rangle$ has the property $\langle q, r \rangle \stackrel{*}{\Rightarrow} x \in \Sigma^*$ iff starting M in state q with an empty stack and running on input x causes M to move to state r and end with an empty stack

4 Conclude that $\langle q_0, q_a \rangle \stackrel{*}{\Rightarrow} w$ iff $w \in L(M)$

Closure properties of CFLs

The class of context-free languages is closed under

- Union
- Concatenation
- Kleene star
- Prefix
- Suffix
- Reversal
- Intersection with a regular language
- Quotient by a string
- Quotient by a regular language

We proved closure under union, concatenation, Kleene star, and PREFIX previously

Reversal

Theorem

Context-free languages are closed under reversal.

Proof. Let B be a context-free language generated by a CFG $G = (V, \Sigma, R, S)$.

Construct CFG $G' = (V, \Sigma, R', S)$ where

 $R' = \{A \to u^{\mathcal{R}} \mid A \to u \text{ is a rule in } R\}.$

Reversal

Theorem

Context-free languages are closed under reversal.

Proof. Let B be a context-free language generated by a CFG $G = (V, \Sigma, R, S)$.

Construct CFG \boldsymbol{G}' = ($\boldsymbol{V},\boldsymbol{\Sigma},\boldsymbol{R}',\boldsymbol{S}$) where

$$R' = \{A \to u^{\mathcal{R}} \mid A \to u \text{ is a rule in } R\}.$$

To prove that $L(G') = B^{\mathcal{R}}$, we want to show that for each variable $A \in V$ and $u \in (V \cup \Sigma)^*$, $A \stackrel{*}{\Rightarrow}_G u$ in n steps iff $A \stackrel{*}{\Rightarrow}_{G'} u^{\mathcal{R}}$ in n steps.

Let's write $\stackrel{k}{\Rightarrow}$ to mean $\stackrel{*}{\Rightarrow}$ in exactly k steps.

Base case
$$n = 0$$
. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u = u^{\mathcal{R}} = A$ so $A \stackrel{0}{\Rightarrow}_{G'} u^{\mathcal{R}}$, and vice versa.

Base case n = 0. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u = u^{\mathcal{R}} = A$ so $A \stackrel{0}{\Rightarrow}_{G'} u^{\mathcal{R}}$, and vice versa.

Inductive step. Assume that for all $A \in V$, and $u \in (V \cup \Sigma)^*$, $A \stackrel{n}{\Rightarrow}_G u$ iff $A \stackrel{n}{\Rightarrow}_{G'} u^{\mathcal{R}}$ for some n.

Base case n = 0. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u = u^{\mathcal{R}} = A$ so $A \stackrel{0}{\Rightarrow}_{G'} u^{\mathcal{R}}$, and vice versa.

Inductive step. Assume that for all $A \in V$, and $u \in (V \cup \Sigma)^*$, $A \stackrel{n}{\Rightarrow}_G u$ iff $A \stackrel{n}{\Rightarrow}_{G'} u^{\mathcal{R}}$ for some n.

If $A \stackrel{n+1}{\Rightarrow}_G u$, then there is some $C \in V$ and $x, y, z \in (V \cup \Sigma)^*$ such that u = xyz, $A \stackrel{n}{\Rightarrow}_G xCz$, and $C \Rightarrow_G y$.

Base case n = 0. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u = u^{\mathcal{R}} = A$ so $A \stackrel{0}{\Rightarrow}_{G'} u^{\mathcal{R}}$, and vice versa.

Inductive step. Assume that for all $A \in V$, and $u \in (V \cup \Sigma)^*$, $A \stackrel{n}{\Rightarrow}_G u$ iff $A \stackrel{n}{\Rightarrow}_{G'} u^{\mathcal{R}}$ for some n.

If $A \stackrel{n+1}{\Rightarrow}_G u$, then there is some $C \in V$ and $x, y, z \in (V \cup \Sigma)^*$ such that u = xyz, $A \stackrel{n}{\Rightarrow}_G xCz$, and $C \Rightarrow_G y$.

By the inductive hypothesis $A \stackrel{n}{\Rightarrow}_{G'} z^{\mathcal{R}} C x^{\mathcal{R}}$ and by construction $C \Rightarrow_{G'} y^{\mathcal{R}}$. Thus $A \stackrel{n+1}{\Rightarrow}_{G'} z^{\mathcal{R}} y^{\mathcal{R}} x^{\mathcal{R}} = (xyz)^{\mathcal{R}} = u^{\mathcal{R}}$. Swapping G and G' shows the converse.

Base case n = 0. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u = u^{\mathcal{R}} = A$ so $A \stackrel{0}{\Rightarrow}_{G'} u^{\mathcal{R}}$, and vice versa.

Inductive step. Assume that for all $A \in V$, and $u \in (V \cup \Sigma)^*$, $A \stackrel{n}{\Rightarrow}_G u$ iff $A \stackrel{n}{\Rightarrow}_{G'} u^{\mathcal{R}}$ for some n.

If $A \stackrel{n+1}{\Rightarrow}_G u$, then there is some $C \in V$ and $x, y, z \in (V \cup \Sigma)^*$ such that u = xyz, $A \stackrel{n}{\Rightarrow}_G xCz$, and $C \Rightarrow_G y$.

By the inductive hypothesis $A \stackrel{n}{\Rightarrow}_{G'} z^{\mathcal{R}} C x^{\mathcal{R}}$ and by construction $C \Rightarrow_{G'} y^{\mathcal{R}}$. Thus $A \stackrel{n+1}{\Rightarrow}_{G'} z^{\mathcal{R}} y^{\mathcal{R}} x^{\mathcal{R}} = (xyz)^{\mathcal{R}} = u^{\mathcal{R}}$. Swapping G and G' shows the converse.

Thus, $A \stackrel{n+1}{\Rightarrow}_{G} u$ iff $A \stackrel{n+1}{\Rightarrow}_{G'} u^{\mathcal{R}}$.

Base case n = 0. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u = u^{\mathcal{R}} = A$ so $A \stackrel{0}{\Rightarrow}_{G'} u^{\mathcal{R}}$, and vice versa.

Inductive step. Assume that for all $A \in V$, and $u \in (V \cup \Sigma)^*$, $A \stackrel{n}{\Rightarrow}_G u$ iff $A \stackrel{n}{\Rightarrow}_{G'} u^{\mathcal{R}}$ for some n.

If $A \stackrel{n+1}{\Rightarrow}_G u$, then there is some $C \in V$ and $x, y, z \in (V \cup \Sigma)^*$ such that u = xyz, $A \stackrel{n}{\Rightarrow}_G xCz$, and $C \Rightarrow_G y$.

By the inductive hypothesis $A \stackrel{n}{\Rightarrow}_{G'} z^{\mathcal{R}} C x^{\mathcal{R}}$ and by construction $C \Rightarrow_{G'} y^{\mathcal{R}}$. Thus $A \stackrel{n+1}{\Rightarrow}_{G'} z^{\mathcal{R}} y^{\mathcal{R}} x^{\mathcal{R}} = (xyz)^{\mathcal{R}} = u^{\mathcal{R}}$. Swapping G and G' shows the converse.

Thus, $A \stackrel{n+1}{\Rightarrow}_{G} u$ iff $A \stackrel{n+1}{\Rightarrow}_{G'} u^{\mathcal{R}}$.

Therefore, for $w \in B$, $S \stackrel{*}{\Rightarrow}_{G} w$ iff $S \stackrel{*}{\Rightarrow}_{G'} w^{\mathcal{R}}$ so $L(G') = B^{\mathcal{R}}$.

Suffix

Theorem

Context free languages are closed under SUFFIX.

Proof.

Since $\text{SUFFIX}(A) = \text{PREFIX}(A^{\mathcal{R}})^{\mathcal{R}}$ and CFLs are closed under reversal and PREFIX, CFLs are closed under SUFFIX.

Intersection of a CFL and a regular language

Theorem

The intersection of a CFL and a regular language is context-free.

Proof.

Let A be a CFL recognized by the PDA $M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_1, F_1)$ and B be a regular language recognized by the NFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Intersection of a CFL and a regular language

Theorem

The intersection of a CFL and a regular language is context-free.

Proof.

Let A be a CFL recognized by the PDA $M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_1, F_1)$ and B be a regular language recognized by the NFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct the PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

$$\begin{aligned} Q &= Q_1 \times Q_2 \\ q_0 &= (q_1, q_2) \\ F &= F_1 \times F_2 \\ \delta((q, r), a, b) &= \{((s, t), c) \mid (s, c) \in \delta_1(q, a, b) \text{ and } t \in \delta_2(r, a)\} \quad \text{for } a \in \Sigma_{\varepsilon}, \ b, c \in \Gamma_{\varepsilon} \end{aligned}$$

Intersection of a CFL and a regular language

Theorem

The intersection of a CFL and a regular language is context-free.

Proof.

Let A be a CFL recognized by the PDA $M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_1, F_1)$ and B be a regular language recognized by the NFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct the PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

$$\begin{aligned} Q &= Q_1 \times Q_2 \\ q_0 &= (q_1, q_2) \\ F &= F_1 \times F_2 \\ \delta((q, r), a, b) &= \{((s, t), c) \mid (s, c) \in \delta_1(q, a, b) \text{ and } t \in \delta_2(r, a)\} \quad \text{for } a \in \Sigma_{\varepsilon}, \ b, c \in \Gamma_{\varepsilon} \end{aligned}$$

As M runs on input w, its stack and the first element of its state change according to δ_1 whereas the second element of its state changes according to δ_2 .

M accepts w iff M_1 accepts w and M_2 accepts w. Therefore, $L(M) = A \cap B$.

What about intersection with another CFL?

Are context-free languages closed under intersection?

What about intersection with another CFL?

Are context-free languages closed under intersection?

```
Consider \Sigma = \{a, b, c\} and
```

```
A = \{\mathbf{a}^{m}\mathbf{b}^{m}\mathbf{c}^{n} \mid m, n \ge 0\}B = \{\mathbf{a}^{m}\mathbf{b}^{n}\mathbf{c}^{n} \mid m, n \ge 0\}
```

Both \boldsymbol{B} and \boldsymbol{C} are context-free. Is

 $A \cap B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \ge 0 \}?$

How can we keep track of how many as and bs we've seen to ensure we get the same number of cs using a PDA?

How about trying to generate such strings with a CFG?

What about intersection with another CFL?

Are context-free languages closed under intersection?

```
Consider \Sigma = \{a, b, c\} and
```

```
A = \{\mathbf{a}^{m}\mathbf{b}^{m}\mathbf{c}^{n} \mid m, n \ge 0\}B = \{\mathbf{a}^{m}\mathbf{b}^{n}\mathbf{c}^{n} \mid m, n \ge 0\}
```

Both \boldsymbol{B} and \boldsymbol{C} are context-free. Is

 $A \cap B = \{a^n b^n c^n \mid n \ge 0\}?$

How can we keep track of how many as and bs we've seen to ensure we get the same number of cs using a PDA?

How about trying to generate such strings with a CFG?

Next time, we'll see that $B \cap C$ is *not* context-free!