CS 383

Lecture 06 - Nonregular languages and the pumping lemma

Stephen Checkoway

Spring 2024

DFA M_{1}

DFA M_{1}

Strings in the language

- aa
- aba
- abba
- abbba
- ab ${ }^{k}$ a for all $k \geq 0$

DFA M_{1}

Strings in the language

- aa
- aba
- abba
- abbba
- ab ${ }^{k}$ a for all $k \geq 0$

All of the strings $w \in L\left(M_{1}\right)$ s.t. $|w| \geq 3$ have a curious property: w can be written as $w=x y z$ where
(1) $|y|>0$ and
(2) $x y^{i} z \in L\left(M_{1}\right)$ for all $i \geq 0$

DFA M_{2}

DFA M_{2}

Strings in the language include

- a
- b
- ba
- aba
- abb
- baba
- abbba
- bababb

Again, strings $w \in L\left(M_{2}\right)$ s.t. $|w| \geq 3$ can be written as $w=x y z$ with $|y|>0$ and $x y^{i} z \in L\left(M_{2}\right)$.
E.g., $x=\mathrm{ba}, y=\mathrm{ba}, z=\varepsilon$

- $x y^{0} z=\mathrm{ba}$
- $x y^{1} z=\mathrm{baba}$
- $x y^{2} z=\mathrm{bababa}$
- ...

DFA M_{3}

DFA M_{3}

$L\left(M_{3}\right)=\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mid m, n \geq 0\right\}$
Strings $w \in L\left(M_{3}\right)$ s.t. $|w| \geq 1$ have the same property.
E.g., $x=\varepsilon, y=\mathrm{a}, z=\mathrm{abb}$

- $x y^{0} z=\mathrm{abb}$
- $x y^{1} z=\mathrm{aabb}$
- $x y^{2} z=$ aaabb
- $x y^{i} z=\mathrm{a}^{i+1} \mathrm{bb}$

DFA M_{3}

$L\left(M_{3}\right)=\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mid m, n \geq 0\right\}$
Strings $w \in L\left(M_{3}\right)$ s.t. $|w| \geq 1$ have the same property.
E.g., $x=\varepsilon, y=\mathrm{a}, z=\mathrm{abb}$

- $x y^{0} z=\mathrm{abb}$
- $x y^{1} z=$ aabb
- $x y^{2} z=$ aaabb
- $x y^{i} z=\mathrm{a}^{i+1} \mathrm{bb}$

Not every way we split the strings works $x=\mathrm{a}, y=\mathrm{ab}, z=\mathrm{b}$

- $x y^{0} z=\mathrm{ab} \in L\left(M_{3}\right)$
- $x y^{1} z=\mathrm{aabb} \in L\left(M_{3}\right)$
- $x y^{2} z=\operatorname{aababb} \notin L\left(M_{3}\right)$

DFA M_{4}

DFA M_{4}

$L\left(M_{4}\right)=\{\varepsilon, \mathrm{b}, \mathrm{ba}, \mathrm{bb}\}$
$L\left(M_{4}\right)$ doesn't appear to have this property (unless we say it holds for all strings in $L\left(M_{4}\right)$ with length at least 3 because there are no such strings)

What do M_{1}, M_{2}, and M_{3} have that M_{4} lacks?

$M_{2}:$

$M_{4}:$

Repeated state for some string in the language

M_{1}, M_{2}, and M_{3} all have a repeated state in some accepting computation

On input aba, M_{1} goes through states $q_{0}, q_{1}, q_{1}, q_{2}$

State q_{1} is repeated so we can repeat it 0 or more times by following the loop on b

M_{2}

On input baba, M_{2} goes through states $q_{0}, q_{3}, q_{1}, q_{2}, q_{1}$
State q_{1} is repeated so we can perform the $q_{1} \rightarrow q_{2} \rightarrow q_{1}$ sequence corresponding to input ba 0 or more times

M_{3}

On input aabb, M_{2} goes through states $q_{0}, q_{0}, q_{0}, q_{1}, q_{1}$
State q_{0} is repeated so we can perform the $q_{0} \rightarrow q_{0}$ sequence corresponding to input a 0 or more times

M_{4}

None of the strings in $L\left(M_{4}\right)$ lead to a repeated state
As mentioned, we can "cheat" and say that the property holds for strings of length at least 3 since $L\left(M_{4}\right)$ has no strings of length at least 3

Pumpable languages

A language A is said to be pumpable if there exists an integer $p>0$ s.t. for all strings $w \in A$ with $|w| \geq p$, there exist strings $x, y, z \in \Sigma^{*}$ with $w=x y z$ s.t.
(1) $x y^{i} z \in A$ for all $i \geq 0$
(2) $|y|>0$
(3) $|x y| \leq p$

The integer p is called the pumping length

Pumpable languages

A language A is said to be pumpable if there exists an integer $p>0$ s.t. for all strings $w \in A$ with $|w| \geq p$, there exist strings $x, y, z \in \Sigma^{*}$ with $w=x y z$ s.t.
(1) $x y^{i} z \in A$ for all $i \geq 0$
(2) $|y|>0$
(3) $|x y| \leq p$

The integer p is called the pumping length

Almost certainly the most complicated mathematical definition you've seen:

$$
\exists p>0 . \forall w \in A . \exists x, y, z \in \Sigma^{*} . \forall i \geq 0 .[\ldots]
$$

Contrast with the definition of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ from calculus

$$
\forall \varepsilon>0 . \exists \delta>0 .[\ldots]
$$

A two-player game

Player One (\exists)

Claims A is pumpable with p.l. p

Picks x, y, z s.t. $w=x y z$

$$
x, y, z
$$

Picks $w \in A$ s.t. $|w| \geq p$
Player Two (\forall)

Pumping lemma for regular languages

Theorem (Pumping lemma)
Regular languages are pumpable.

Note: The converse is not true! There are pumpable languages that are not regular

Proof

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA with $L(M)=A$ and set $p=|Q|$.
If A contains no strings of length at least p, then we're finished since A is pumpable with pumping length p.

Proof

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA with $L(M)=A$ and set $p=|Q|$.
If A contains no strings of length at least p, then we're finished since A is pumpable with pumping length p.

Otherwise, let w be a string in A of length $n \geq p$.
Write $w=w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$.
Let $r_{0}, r_{1}, \ldots, r_{n}$ be the accepting computation of M on w.
By the pigeonhole principle, in the first $p+1$ states $\left(r_{0}, r_{1}, \ldots, r_{p}\right)$, there are states $r_{j}=r_{k}$ s.t. $0 \leq j<k \leq p$.

Proof

Set

$$
\begin{aligned}
& x=w_{1} w_{2} \cdots w_{j} \\
& y=w_{j+1} w_{j+2} \cdots w_{k} \\
& z=w_{k+1} w_{k+2} \cdots w_{n}
\end{aligned}
$$

Remember $\delta\left(r_{m-1}, w_{m}\right)=r_{m}$ for all $1 \leq m \leq n$
(2) $|y|=k-j>0$
(3) $|x y| \leq p$ because $k \leq p$

Proof

(1) $x y^{i} z{ }^{?} A$

$$
\delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m
$$

Proof

(1) $x y^{i} z \stackrel{?}{\in} A$

$$
\begin{array}{llllllll}
w_{1} & w_{2} & \cdots & w_{j} \\
r_{0} & r_{1} & r_{2} & \cdots & r_{j}
\end{array} \overbrace{w_{k+1}} w_{k+2} \quad \cdots \quad w_{n}
$$

$$
\delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m
$$

Proof

(1) $x y^{i} z \stackrel{?}{\in} A$

$$
\begin{aligned}
& \delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m \\
& \delta\left(r_{j}, w_{k+1}\right)=\delta\left(r_{k}, w_{k+1}\right)=r_{k+1}
\end{aligned}
$$

$i=0$

$$
\overbrace{\begin{array}{lllllll}
w_{1} & w_{2} & \cdots & w_{j} \\
r_{0} & r_{1} & r_{2} & \cdots & r_{j}
\end{array}}^{x} \overbrace{w_{k+1}} w_{k+2} \cdots \cdots w_{n}
$$

Proof

(1) $x y^{i} z \stackrel{?}{\in} A$

$$
\begin{aligned}
& \delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m \\
& \delta\left(r_{j}, w_{k+1}\right)=\delta\left(r_{k}, w_{k+1}\right)=r_{k+1}
\end{aligned}
$$

$i=0$

$$
\begin{array}{ccccccccc}
& \overbrace{w_{1}} w_{2} & \cdots & w_{j}
\end{array} \overbrace{w_{k+1}}^{w_{k+2}} \begin{array}{lllll}
& \cdots & w_{n} \\
r_{0} & r_{2} & \cdots & r_{j} & r_{k+1} \\
r_{k+2} & \cdots & r_{n}
\end{array}
$$

Proof

(1) $x y^{i} z \stackrel{?}{\in} A$

$$
\begin{aligned}
& \begin{array}{l}
\delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m \\
\delta\left(r_{j}, w_{k+1}\right)=\delta\left(r_{k}, w_{k+1}\right)=r_{k+1}
\end{array} \\
& i=0 \\
& \begin{array}{lllllllll}
r_{0} & r_{1} & r_{2} & \cdots & r_{j} & r_{k+1} & r_{k+2} & \cdots & r_{n}
\end{array} \\
& i=1 \\
& \begin{array}{lllllllllllll}
r_{0} & r_{1} & r_{2} & \cdots & r_{j} & r_{j+1} & r_{j+2} & \cdots & r_{k} & r_{k+1} & r_{k+2} & \cdots & r_{n}
\end{array}
\end{aligned}
$$

Proof

(1) $x y^{i} z \stackrel{?}{\in} A$

$$
\begin{aligned}
& \delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m \\
& \delta\left(r_{j}, w_{k+1}\right)=\delta\left(r_{k}, w_{k+1}\right)=r_{k+1}
\end{aligned}
$$

$$
i=0
$$

$$
i=1
$$

$i=2$

Proof

(1) $x y^{i} z \stackrel{?}{\in} A$

$$
\begin{aligned}
& \delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m \\
& \delta\left(r_{j}, w_{k+1}\right)=\delta\left(r_{k}, w_{k+1}\right)=r_{k+1} \\
& \delta\left(r_{k}, w_{j+1}\right)=\delta\left(r_{j}, w_{j+1}\right)=r_{j+1}
\end{aligned}
$$

$i=0$

$$
i=1
$$

$i=2$

Proof

(1) $x y^{i} z \stackrel{?}{\in} A$

$$
\begin{aligned}
& \delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m \\
& \delta\left(r_{j}, w_{k+1}\right)=\delta\left(r_{k}, w_{k+1}\right)=r_{k+1} \\
& \delta\left(r_{k}, w_{j+1}\right)=\delta\left(r_{j}, w_{j+1}\right)=r_{j+1}
\end{aligned}
$$

$i=0$

$$
i=1
$$

$i=2$

Proof

(1) $x y^{i} z \stackrel{?}{\in} A$

$$
\begin{aligned}
& \delta\left(r_{m-1}, w_{m}\right)=r_{m} \quad \forall m \\
& \delta\left(r_{j}, w_{k+1}\right)=\delta\left(r_{k}, w_{k+1}\right)=r_{k+1} \\
& \delta\left(r_{k}, w_{j+1}\right)=\delta\left(r_{j}, w_{j+1}\right)=r_{j+1}
\end{aligned}
$$

$i=0$

$$
i=1
$$

$i=2$

Proof

Starting in state r_{j}, when M reads y, it ends in state $r_{k}=r_{j}$.
Therefore, when M runs on $x y^{i} z$, it
(1) starts in state $r_{0}=q_{0}$ and after reading x is in state r_{j};
(2) for each of the i copies of y, it is in state r_{j}, reads y, and moves to state $r_{k}=r_{j}$; and
(3) from state r_{k}, it reads z and ends in state $r_{n} \in F$

Therefore M accepts $x y^{i} z$ so
(1) $x y^{i} z \in A$
(2) $|y|>0$
(3) $|x y| \leq p$.

Therefore, A is pumpable.

Proving languages are not regular

If we want to prove language A is not regular,
(1) Assume A is regular

Proving languages are not regular

If we want to prove language A is not regular,
(1) Assume A is regular
(2) Since A is regular, it is pumpable with pumping length p

Proving languages are not regular

If we want to prove language A is not regular,
(1) Assume A is regular
(2) Since A is regular, it is pumpable with pumping length p
(3) Construct a string $w \in A$ of length at least p

Proving languages are not regular

If we want to prove language A is not regular,
(1) Assume A is regular
(2) Since A is regular, it is pumpable with pumping length p
(3) Construct a string $w \in A$ of length at least p
(4) Show that every partition of w into $x y z$ such that $|x y| \leq p$ and $|y|>0$ yields some i such that $x y^{i} z \notin A$

Proving languages are not regular

If we want to prove language A is not regular,
(1) Assume A is regular
(2) Since A is regular, it is pumpable with pumping length p
(3) Construct a string $w \in A$ of length at least p
(4) Show that every partition of w into $x y z$ such that $|x y| \leq p$ and $|y|>0$ yields some i such that $x y^{i} z \notin A$
(5) This contradicts the pumping lemma so our assumption must be false, namely A is not regular

Example

Let's prove $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular

Example

Let's prove $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular
Assume A is regular with pumping length p
Now we need to pick a string $w \in A$ with length $|w| \geq p$

Example

Let's prove $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular
Assume A is regular with pumping length p
Now we need to pick a string $w \in A$ with length $|w| \geq p$
Let $w=0^{p} 1^{p}$ which has length $2 p \geq p$
Consider $x y z=w$ such that $|x y| \leq p$ and $|y|>0$
We got to choose w, but we don't get to choose x, y, and z
We have to consider all possible choices!
What are the possible values of x, y, and z ?

Example

Let's prove $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular
Assume A is regular with pumping length p
Now we need to pick a string $w \in A$ with length $|w| \geq p$
Let $w=0^{p} 1^{p}$ which has length $2 p \geq p$
Consider $x y z=w$ such that $|x y| \leq p$ and $|y|>0$
We got to choose w, but we don't get to choose x, y, and z
We have to consider all possible choices!
What are the possible values of x, y, and z ?
x and y consist solely of 0 s and z has the rest of the $p 0 \mathrm{~s}$ followed by $p 1 \mathrm{~s}$:
$x=0^{m}, y=0^{n}, z=0^{p-m-n} 1^{p}$ where $n>0$

Example

$x=0^{m}, y=0^{n}, z=0^{p-m-n} 1^{p}$ where $n>0$
Now we need to find an $i \geq 0$ such that $x y^{i} z \notin A$

What value of i should we choose?

Example

$x=0^{m}, y=0^{n}, z=0^{p-m-n} 1^{p}$ where $n>0$
Now we need to find an $i \geq 0$ such that $x y^{i} z \notin A$

What value of i should we choose? In this case any $i \neq 1$ works, so let's go with $i=0$ ("pumping down")

$$
x y^{0} z=x z=0^{p-n} 1^{p}
$$

Since $n>0, p-n \neq p$ so $x y^{0} z \notin A$ and thus A is not regular

Palindromes are not regular

Prove $B=\left\{w \mid w \in\{0,1\}^{*}\right.$ and $\left.w=w^{\mathcal{R}}\right\}$ is not regular

Palindromes are not regular

Prove $B=\left\{w \mid w \in\{0,1\}^{*}\right.$ and $\left.w=w^{\mathcal{R}}\right\}$ is not regular
Assume B is regular with pumping length p
We need to pick w; what should we pick?

Palindromes are not regular

Prove $B=\left\{w \mid w \in\{0,1\}^{*}\right.$ and $\left.w=w^{\mathcal{R}}\right\}$ is not regular
Assume B is regular with pumping length p
We need to pick w; what should we pick?
Let $w=0^{p} 10^{p}$
Thus, $x=0^{m}, y=0^{n}$, and $z=0^{p-m-n} 10^{p}$

Palindromes are not regular

Prove $B=\left\{w \mid w \in\{0,1\}^{*}\right.$ and $\left.w=w^{\mathcal{R}}\right\}$ is not regular
Assume B is regular with pumping length p
We need to pick w; what should we pick?
Let $w=0^{p} 10^{p}$
Thus, $x=0^{m}, y=0^{n}$, and $z=0^{p-m-n} 10^{p}$
Let's "pump up" this time and try $i=2$

$$
x y^{2} z=0^{p+n} 10^{p} \notin B
$$

Therefore, B is not regular

Subsets of regular languages

True or false. If A is a regular language and $B \subseteq A$, then B is regular.

Subsets of regular languages

True or false. If A is a regular language and $B \subseteq A$, then B is regular.
FALSE! Every language over Σ is a subset of Σ^{*} which is regular

Subsets of regular languages

True or false. If A is a regular language and $B \subseteq A$, then B is regular.
FALSE! Every language over Σ is a subset of Σ^{*} which is regular
What's wrong with this argument?
Since A is regular, there is a DFA M that recognizes A
Since $B \subseteq A, M$ accepts every string in B so B is regular

Subsets of regular languages

True or false. If A is a regular language and $B \subseteq A$, then B is regular.
FALSE! Every language over Σ is a subset of Σ^{*} which is regular
What's wrong with this argument?
Since A is regular, there is a DFA M that recognizes A
Since $B \subseteq A, M$ accepts every string in B so B is regular
It's missing the fact that for B to be regular there needs to be a DFA M^{\prime} that accepts every string in B and rejects every string not in B

accepts every string in Σ^{*}

More nonregular languages

- $C=\left\{0^{m} 1^{n} 0^{m} \mid m, n \geq 0\right\}$
- $D=\left\{0^{m} 1^{n} \mid m \leq n\right\}$
- $E=\left\{w \mid w \in\{0,1\}^{*}\right.$ and w has the same number of 0 s and $\left.1 \mathbf{s}\right\}$

