CS 383

Lecture 04 — Regular Expressions

Stephen Checkoway

Spring 2024

1/35

Review from last time

NFA N = (Q,%,0,qp, F') where 6 : Q X X, - P(Q) maps a state and an alphabet
symbol (or €) to a set of states

We run an NFA on an input w by keeping track of all possible states the NFA could be
in

We can convert an NFA to a DFA by letting each state of the DFA represent a set of
states in the NFA

2/35

Building new languages using regular operation
Use regular operations to build new languages
A = {w | w starts and ends with the same symbols}

B={t'a|kz1}
C = {¢,ba,aaa}

D=C"

E=AuU(Bo()
F=(DoC)u(B"oE)

3/35

Describing complex languages using simpler ones

Use regular operations to break complex languages down into simpler ones

A = {w | w starts and ends with the same symbols}
B={t'a|kz1}
C = {e,ba,aaa}

4/35

Describing complex languages using simpler ones

Use regular operations to break complex languages down into simpler ones

A = {w | w starts and ends with the same symbols}
B={t'a|kz1}
C = {e,ba,aaa}

C = {e} U {va} U {aaa}

4/35

Describing complex languages using simpler ones

Use regular operations to break complex languages down into simpler ones

A = {w | w starts and ends with the same symbols}
B={t'a|kz1}
C = {e,ba,aaa}

C = {e} U {va} U {aaa}
= {e}u ({b} o {a}) U ({a} o {a} o {a})

4/35

Describing complex languages using simpler ones
Use regular operations to break complex languages down into simpler ones
A = {w | w starts and ends with the same symbols}

B={t'a|kz1}
C = {¢,ba,aaa}

C = {e} U {va} U {aaa}

={e}u ({p} o {a}) U ({a} o {a} o {a})
B = {b} o {b}" o {a}

4/35

Describing complex languages using simpler ones

Use regular operations to break complex languages down into simpler ones

A = {w | w starts and ends with the same symbols}
B={t'a|kz1}
C = {e,ba,aaa}

C = {e} U {va} U {aaa}
= {e}u ({b} o {a}) U ({a} o {a} o {a})
B = {b} o {b}" o {a}
A={a}u{b}u({a} o= o {a}) U ({b} o X" o {b})

4/35

Describing complex languages using simpler ones

Use regular operations to break complex languages down into simpler ones

A = {w | w starts and ends with the same symbols}
B={t'a|kz1}
C = {e,ba,aaa}

C = {e} U {va} U {aaa}
= {e}u ({b} o {a}) U ({a} o {a} o {a})
B = {b} o {b}" o {a}
A={a}u{b}u({a} o= o {a}) U ({b} o X" o {b})
={a}u{p} U ({a} o ({a} U {b})" o {a}) U ({b} o ({a} U {b})" o {b})

4/35

Describing complex languages using simpler ones

Use regular operations to break complex languages down into simpler ones

A = {w | w starts and ends with the same symbols}
B={t'a|kz1}
C = {e,ba,aaa}

C = {c} u {ba} U {aaa}
= {e}u ({b} o {a}) U ({a} o {a} o {a})
B = {b} o {b}" o {a}
A={a}u{b}u({a} o= o {a}) U ({b} o X" o {b})
={a}u{p} U ({a} o ({a} U {b})" o {a}) U ({b} o ({a} U {b})" o {b})

We broke each language down into languages containing {a}, {b}, or {¢} and
combined them using the three regular operations U, o, and *

4/35

Regular expressions

The braces aren't adding anything since all of our sets are singletons; let's drop them
Similarly, let's drop the o much as how we drop multiplication symbols
Let's also replace U with | (which we read as “or”)

This gives us regular expressions (regex)

A={a}u{b}u({a} o ({a} U {b})" o {a}) U ({b} o ({a} U {b})" o {b})

B = {b} o {b}" o {a}

C ={e}u({p}of{a})u({a}o{a}o{a})

5/35

Regular expressions

The braces aren't adding anything since all of our sets are singletons; let's drop them
Similarly, let's drop the o much as how we drop multiplication symbols
Let's also replace U with | (which we read as “or”)

This gives us regular expressions (regex)
A= {a} U (b} U ({a} o ({a} U {B})" o {a}) U ({b} o ({a} U (B} o {b})
=a|blala|b)*a|bla|Db) b
B ={b}o{b}" o {a}

C ={e}u({p}of{a})u({a}o{a}o{a})

5/35

Regular expressions

The braces aren't adding anything since all of our sets are singletons; let's drop them
Similarly, let's drop the o much as how we drop multiplication symbols
Let's also replace U with | (which we read as “or”)

This gives us regular expressions (regex)
A= {a} U (b} U ({a} o ({a} U {B})" o {a}) U ({b} o ({a} U (B} o {b})
=a|blala|b)*a|bla|Db) b
B ={b}o{b}" o {a}
=bb'a

C ={e}u({p}of{a})u({a}o{a}o{a})

5/35

Regular expressions

The braces aren't adding anything since all of our sets are singletons; let's drop them
Similarly, let's drop the o much as how we drop multiplication symbols
Let's also replace U with | (which we read as “or”)

This gives us regular expressions (regex)
A={a}u{pb}u({a} o ({a} U {b})" o {a}) U ({b} o ({a} U {b})" o {b})
=a|blala|b)*a|bla|Db) b
B = {b} o {b}" o {a}
=bb'a
C={e}u({p}o{a})u({a}o{a}o{a})

=¢|ba|aaa

5/35

Regular expressions

The braces aren't adding anything since all of our sets are singletons; let's drop them
Similarly, let's drop the o much as how we drop multiplication symbols
Let's also replace U with | (which we read as “or”)

This gives us regular expressions (regex)
A={a}u{pb}u({a} o ({a} U {b})" o {a}) U ({b} o ({a} U {b})" o {b})
=a|blala|b)*a|bla|Db) b
B = {b} o {b}" o {a}
=bb'a
C={e}u({p}o{a})u({a}o{a}o{a})

=¢|ba|aaa

Order of operation: *, o, |
Parentheses used for grouping
We underline the expression to differentiate the string aaa from the regular expression

aaa
5/35

Regular expressions

Six types of regular expressions: three base types, three recursive types

Regex Language

[} @ (very rarely used)

£ {e}

t {t} for eacht € ©
Ri|Ry L(Ry)UL(Ry) R;and Ry are regex
RioRy L(Ry)o L(Ry) R; and Ry are regex
R* L(R)* R is a regex

As a shorthand, we'll use X' to mean a | b (or similar for other alphabets)

A=a|blaY*a|bX™Dp

6/35

Technicalities

Technically, a regular expression generates or describes a (regular) language, it is not a
language itself

Given a regular expression R, the language L(R) is the set of strings generated by R

E.g., R = ab"a generates strings aa, aba, abba, ...
L(R) = {ab'a | k = 0}

A DFA M recognizes a (regular) language L(M) but we don't identify M with its
language

Similarly, we shouldn’t identify a regular expression R with its language L(R); however
it is customary to do so

Still, even if we let {aba} = aba, that doesn't mean aba is the same as aba!

7/35

Kleene star

8/35

Kleene star

e a*={a" | k20}

® (a|b|c)" ={w | w contains any number of a, b, or ¢ in any order}

8/35

Kleene star

*a’={a" | kz0}
® (a|b|c)" ={w | w contains any number of a, b, or ¢ in any order}

® (aa|bab)* = {w | w is the concatenation of 0 or more aa or bab}

8/35

Kleene star
ca"={a" | k20)
® (a|b|c)" ={w | w contains any number of a, b, or ¢ in any order}
® (aa|bab)* = {w | w is the concatenation of 0 or more aa or bab}

 a"p" = {a™" | m,n = 0}

8/35

Kleene star

e a*={a" | k20}

(a]|b|c)* ={w | w contains any number of a, b, or ¢ in any order}

(aa | bab)* = {w | w is the concatenation of 0 or more aa or bab}

a'b* = {a"b" | m,n = 0}

ef={e}=¢

8/35

Kleene star

e a*={a" | k20}

(a]|b|c)* ={w | w contains any number of a, b, or ¢ in any order}

(aa | bab)* = {w | w is the concatenation of 0 or more aa or bab}

a'b* = {a"b" | m,n = 0}

={e}=¢

*
e
2" ={e}=¢

8/35

Kleene star

e a*={a" | k20}

(a]|b|c)* ={w | w contains any number of a, b, or ¢ in any order}

(aa | bab)* = {w | w is the concatenation of 0 or more aa or bab}

a'b* = {a"b" | m,n = 0}
o f={e}=¢
={e}=¢

Q*
X* =%" ={w | wis a string over X}

8/35

Regular expression examples

e XX ={w]|w| =2}

9/35

Regular expression examples

e XX ={w]|w| =2}
o (UX)" ={w| |w| is even}

9/35

Regular expression examples

e XX ={w]|w| =2}
o (UX)" ={w| |w| is even}

® a*(baa”)* = {w | every b in w is followed by at least one a}

9/35

Regular expression examples
e XX ={w]|w| =2}
o (UX)" ={w| |w| is even}
® a*(baa”)* = {w | every b in w is followed by at least one a}

® (ale)b" =ab™ |b*

9/35

Regular expression examples

e XX ={w]|w| =2}
(X2)* ={w | |w| is even}

a*(baa™)* = {w | every b in w is followed by at least one a}

(a]e)p” =ab” |b"

a'ba* = {w | w contains exactly one b}

9/35

Question 1

What strings are in the language given by the regular expression (a | bb)(e | a)?

10/35

Question 1

What strings are in the language given by the regular expression (a | bb)(e | a)?

a, aa, bb, bba

10/35

Question 2

True or false. If languages A and B each contain 2 strings, then A o B contains 4
strings.

11/35

Question 2

True or false. If languages A and B each contain 2 strings, then A o B contains 4
strings.

False. Counter example: A = B = {¢,a}. Ao B = {¢,a,aa}

Another counter example A = {a,ab} and B = {b,bb}. A o B = {ab, abb, abbb}

11/35

Question 3

Is abaaa in the language given by (a | ba | aaa)*?

12/35

Question 3

Is abaaa in the language given by (a | ba | aaa)*?

Yes. abaaa = abaaa

12/35

Question 4

Write a regex for the language {w | baba is a substring of w}

13/35

Question 4

Write a regex for the language {w | baba is a substring of w}

Y *babal*

13/35

Question 5

Write a regex for the language
{w | the second symbol of w is a or the third to last symbol of w is b}

14/35

Question 5

Write a regex for the language
{w | the second symbol of w is a or the third to last symbol of w is b}

YaX* | X'oxy

14/35

Question 6

Let ¥ ={0,1,...,9,—}and D=0|1]---|9. What strings are generated by the
following regular expression?

((1- | e)DDD~- | €)DDD-DDDD

15/35

Question 6

Let ¥ ={0,1,...,9,—}and D=0|1]---|9. What strings are generated by the
following regular expression?

((1- | e)DDD~- | €)DDD-DDDD

U.S. phone numbers.

We can rewrite this regex as

1-DDD-DDD-DDDD | DDD-DDD-DDDD | DDD-DDDD

15/35

Question 7

If R is a regular expression, then the language generated by R™ is either infinite or
contains exactly one string. Under what condition on R is R” infinite? When R*
contains exactly one string, what is the string and what is R?

16 /35

Question 7

If R is a regular expression, then the language generated by R™ is either infinite or
contains exactly one string. Under what condition on R is R” infinite? When R*
contains exactly one string, what is the string and what is R?

R" is infinite if R contains at least one nonempty string

R* contains exactly one string, namely &, when R =¢c or R = 2

16 /35

Regular expression manipulation

Let Ry, Rs, and R3 be regular expressions
* R |@=R

17/35

Regular expression manipulation

Let Ry, Rs, and R3 be regular expressions
* R |@=R
b R1 ceg = Rl

17/35

Regular expression manipulation

Let Ry, Rs, and R3 be regular expressions
* Ri|@=R
® (R | Ry)R3 =R R3| RyRs

17/35

Regular expression manipulation

Let Ry, Rs, and R3 be regular expressions
* R |@=R
® (R | Ry)R3 =R R3 | Ryl
® Ry(Ry| R3) = RiRy | R1R3

17/35

Regular expression manipulation

Let Ry, Rs, and R3 be regular expressions
* Ri|lo=R

(Ri | Ro)R3 = RiR3 | RyR3

Ry(Ry | R3) = RiRy | R1R3

(&) = B}

17/35

Regular expression manipulation
Let Ry, Rs, and R3 be regular expressions
* R |@=R
L4 R1 cg = Rl
(R | Ro)R3 = RiR3 | RyR3
Ri(Ry | R3) = RiRy | R R
(Ri)" = Ry
(Ri | Ry)* = (RiR3)"

17/35

Regular expression manipulation
Let Ry, Rs, and R3 be regular expressions
* Ri|lo=R
(Ry | Ry)R3 = RiR3 | Ry R
Ri(Ry | R3) = RiRy | Ry R
. () -t
* (Ri|Ry)" = (RiR3)"

Theorem

Every regular expression R can be rewritten as an equivalent regular expression
Ry| Ry |- | Ry

such that none of the R; contain an “or” (|)

17/35

Converting regular expressions to NFAs
Theorem
Every regular expression R can be converted to an equivalent NFA N. l.e.,

L(N) = L(R)

Proof idea
Induction on the structure of the regex

We need to construct NFAs directly for the three base cases, @, ¢ and ¢ for t € ¥

Then, we handle the three inductive cases, R | Ry, R; © Ry, and R_T

For the inductive cases, we assume there exist NFAs for Ry and Ry and use them to
build NFAs for the three inductive cases

18/35

Converting regular expressions to NFAs
Proof.

Base cases.

@r=2 _()

19/35

Converting regular expressions to NFAs
Proof.

Base cases.
@r=2 _()
® R=¢ —)@

19/35

Converting regular expressions to NFAs
Proof.

Base cases.
@r=2 _()
® R=¢ —)@

©@R=t _,Q/i»© fort €%

19/35

Converting regular expressions to NFAs
Proof.

Base cases.
@r=2 _()
® R=¢ —)@

©@R=t _,Q/i»© fort €%

Inductive cases.
O R=Ry| Ry
@ R=RioRy
@ R=R|

19/35

Converting regular expressions to NFAs
Proof.

Base cases.
@r=2 _()
® R=¢ —>©

©@R=t _,Q/i»© fort €%

Inductive cases.

O R=Ry| Ry
@ R=RioRy
@ R=R{

By the inductive hypothesis, there exist NFAs Ny and Ny such that L(Ny) = L(R;)
and L(NQ) = L(RQ)

19/35

Converting regular expressions to NFAs
Proof.

Base cases.
@r=2 _()
® R=¢ —>©

©@R=t —>Q/L‘© fort €%

Inductive cases.

O R=Ry| Ry
@ R=RioRy
@ R=R{

By the inductive hypothesis, there exist NFAs Ny and Ny such that L(Ny) = L(R;)
and L(NQ) = L(RQ)

Since regular languages are closed under union, concatenation, and Kleene star, L(R)
is regular so there exists some NFA N such that L(N) = L(R). O

19/35

Converting regular expressions to NFAs

The proof of the inductive cases applied previous theorems to show that some NFA

exists

But we know how to perform the constructions explicitly:

Ny

O O
O

Ny

+O

O O
O——7=]

O

0 2P
0

20/35

Regular expressions describe regular languages

The language of a regular expression is regular

This follow directly from the previous theorem:
Regular expression = NFA = DFA = regular language

21/35

Regular expression to NFA: R = a(ba)” | b(ab)”

0 a ——+(::>"£L‘*<:)

22/35

Regular expression to NFA: R = a(ba)” | b(ab)”

0 a ——+(::>"£L‘*<:)
®b —>O/—‘©

22/35

Regular expression to NFA: R = a(ba)” | b(ab)”
°: -0 "0
o 00
b 5 a
o OO 0"0

22/35

Regular expression to NFA: R = a(ba)” | b(ab)”

°: -00

et -0 O

o —O—0O~0"0
o) 002000

22/35

Regular expression to NFA: R = a(ba)” | b(ab)”

°: -00

et -0 O

o —O—0O~0"0
o) 002000

o) OO0 02000

22/35

Regular expression to NFA: R = a(ba)” | b(ab)”

0 a —>O/a\’©

@b —~O>0

® ba —~ OO0 00

o) O 02000

0:02)" OO0 0000
o) OO0~ 0 02000

Regular expression to NFA: R = a(ba)” | b(ab)”
0 a —>Q/é\’©
@b —~O>0
® ba —~ OO0 00
0t OO0~ ~0=0
0:00 O OSOO0
0ra) OO0 00070

b

o R {Z ;

b

Not the smallest possible NFA
] %%%m

b

0=0

{g@:a:o

b

® babab

Not the smallest possible NFA
] %%%m

b

0=0

{§©:a:o

b

® Habab

Not the smallest possible NFA
] %%%m@

b

0=0

{g@:a:o

b

bab

Not the smallest possible NFA
] %%%m

b

0=0

{§©:a:o

b

ab

Not the smallest possible NFA
] %%%m@

b

0=0

{g@:a:o

b

b

Not the smallest possible NFA
] O\fo\f%om@

b

0=0

*C}){@é@

b

v Accepted

Not the smallest possible NFA
] %%%m

b

0=0

{g@éo

b

® babab V’Accepted
® abab

24/35

Not the smallest possible NFA
] %%%m

b

0=0

{g@éo

b

® babab /Accepted
® -bab

24/35

Not the smallest possible NFA
] %%%m

b

0@

{g@éo

b

® babab /Accepted

° ab

24/35

Not the smallest possible NFA
] %%%m

b

0=0

{g@éo

b

® babab /Accepted
g b

24/35

Not the smallest possible NFA
] O\fo\f%m@

b

0@

*Ci@:a:o

b

® babab /Accepted
° xRejected

24/35

Not the smallest possible NFA
] O\fo\f%m

b

0=0

{g@:a:o

b

® babab ¢ Accepted
® abab xRejected
® abb

25/35

Not the smallest possible NFA
] O\fo\f%m@

b

0=0

*Ci@:a:o

b

® babab ¢ Accepted
® abab xRejected
® -bb

25/35

Not the smallest possible NFA
] O\fo\f%m@

b

0@

*Ci@:a:o

b

® babab ¢ Accepted
® abab xRejected
g b

25/35

Not the smallest possible NFA
) O\fo\f%m@

b

0=0

*Ci@:a:o

b

® babab ¢ Accepted
® abab xRejected
° xRejected

25/35

Converting from NFAs to regex
Theorem
Every NFA (and thus every DFA) can be converted to an equivalent regular expression.

Proof idea

@ Convert the NFA to a new type of finite automaton whose edges are labeled with
regular expressions

® Remove states and update transitions one at a time from the new automaton to
produce an equivalent automaton

©® When only the start and (single) accept state remain, the transition between them
is the regular expression

26/35

Generalized NFA (GNFA)

A GNFA is a finite automaton with
® a single accept state,
® no transitions to the start state,
® no transitions from the accept state, and
® cach transition is labeled with a regular expression

aab | b" | aba

27/35

GNFA acceptance

A GNFA transitions from one state to the next by reading a block of input symbols
generated by the regex

aab | b* | aba

babaaba

28/35

GNFA acceptance

A GNFA transitions from one state to the next by reading a block of input symbols
generated by the regex

aab | b* | aba

baaba

28/35

GNFA acceptance

A GNFA transitions from one state to the next by reading a block of input symbols
generated by the regex

aab | b* | aba

aaba

28/35

GNFA acceptance

A GNFA transitions from one state to the next by reading a block of input symbols
generated by the regex

aab | b* | aba

28/35

GNFA acceptance

A GNFA transitions from one state to the next by reading a block of input symbols
generated by the regex

aab | b* | aba

v Accepted

28/35

Removing states in a GNFA

@ Select a state to remove r other than the start or accept states (r € Q@ \ {qo, . })
@® For each ¢,5 € Q \ {r} we have
Ry

CO0O

Ry
If a transition is missing from the GNFA, then the corresponding regex is @
Remove state r and replace regex R4 with R1R2*R3 | R,

RiR5R; | Ry

O TG

29/35

Removing states in a GNFA

@ Select a state to remove r other than the start or accept states (r € Q@ \ {qo, . })
@® For each ¢,5 € Q \ {r} we have
Ry

Ry Ry
OwOp -
Ry

If a transition is missing from the GNFA, then the corresponding regex is @
Remove state r and replace regex R4 with R1R2*R3 | R,

RiR5R; | Ry

O © NG

29/35

Remove state ¢,

aab | b* | aba

30/35

Remove state ¢;

aab | b* | aba

30/35

Remove state ¢;

aab | b* | aba

(ab® | £)(aab | b* | aba)*a

- @

30/35

Remove state ¢;
aab | b* | aba

(ab® | €)(aab | b* | aba)*a

30/35

Remove state ¢,

aab |b" | aba
Ri=ab"|e
Ry = aab | b* | aba
R3=aa*
Ry =Da

(ab® | €)(aab | b* | aba)*a

(ab* | €)(aab | b* | aba)*aa™ | ba

30/35

Remove state ¢;
aab | b* | aba

(ab® | €)(aab | b* | aba)*a

(ab® | €)(aab | b* | aba)*aa™ | ba

30/35

Remove state ¢,

aab | b* | aba
Ry =D
R, = aab |b" | aba
R3=a
Ry=¢

(ab® | €)(aab | b* | aba)*a

@ b(aab | b* | aba)*a|e

30/35

(ab* | €)(aab | b* | aba)*aa™ | ba

Remove state ¢,

aab | b* | aba
Ry =b
R, = aab | b* | aba
R; = aa"
Ry=2

@ b(aab | b* | aba)*a|e

30/35

(ab* | €)(aab | b* | aba)*aa™ | ba

Remove state ¢,

aab | b* | aba
Ry =b
R, = aab | b* | aba
R; = aa"
Ry=2

(ab® | €)(aab | b* | aba)*a

@ b(aab | b* | aba)*a|e

b(aab | b* | aba)*aa®

(ab* | €)(aab | b* | aba)*aa™ | ba

30/35

Remove state ¢

(ab™ | £)(aab | b* | aba)*a

@ b(aab | b* | aba)*a|e

b(aab | b* | aba)*aa”

(ab” | €)(aab | b* | aba)*aa™ | ba

((ab" | £)(aab | b* | aba)*aa™ | ba)(b(aab [b" | aba)*aa*)*(b(aab | b* | aba)*a|e) |
((ab™ | €)(aab | b* | aba)*a)

@

31/35

Converting GNFA to regular expression

Remove states one at a time until only the start and accept remain
The one remaining transition is an equivalent regex
aab | b* | aba
G:

L(G) = ((ab" | &)(aab | b* | aba)*aa” | ba)(b(aab | b" | aba)*aa*)*(b(aab [" | aba)*a|e) |

((ab® | €)(aab | b* | aba)*a)

32/35

Converting an NFA (or DFA) to a GNFA

@ Add a new start state with an epsilon transition to the original start state
® Add a new accept state with epsilon transitions from the original accept states

© Convert multiple transitions between a pair of nodes to a single regex using | to
separate them

33/35

Converting an NFA (or DFA) to a regular expression
Theorem

Every NFA (and thus every DFA) can be converted to an equivalent regular expression.

Biawf.an NFA N, convert it to an equivalent GNFA G. Convert G to an equivalent
regular expression.
(Some details missing, but see the book.) O

34/35

Example

a,b
=0
b
€ alb £
First, convert to a GNFA. _>
b

35/35

Example

a,b
~(@(®)
b
€ alb £
First, convert to a GNFA. _>‘/_\‘
b

b(a | b)

e(a|b) B
Next, remove ¢; —>

35/35

Example
a,b
2 O=0
b
5 alb €
First, convert to a GNFA. _>‘/_N
b

b(a | b)

e(a|b) c
Next, remove ¢; —>

e(a|b)(b(alb))’e

Next, remove ¢y —>

35/35

Example
a,b
2 O=0
b
€ alb £
First, convert to a GNFA. _>‘/_\‘
b

b(a | b)

e(a|b) B
Next, remove ¢; —>

e(a|b)(b(a|b))"e
Next, remove q2 —>

Equivalent regular expression ¢(a | b)(b(a | b))*e

35/35

Example
a,b
2 O=0
b
€ alb £
First, convert to a GNFA. _>‘/_\‘
b

b(a | b)

e(a|b) B
Next, remove ¢; —>

e(a|b)(b(a|b))"e
Next, remove q2 —>

Equivalent regular expression ¢(a | b)(b(a | b))*e = X(bx)*

35/35

	Review
	Regular expressions

