
CS 383
Lecture 22 – Mapping reductions

Stephen Checkoway

Fall, 2023

1 / 41



Review of decidable languages
• Context-free languages (and thus regular)

• Acceptance problems
• ADFA
• ANFA
• AREX
• ACFG

• Emptiness problems
• EDFA
• ECFG

• Equivalence problems
• EQDFA

2 / 41



Review of decidable languages
• Context-free languages (and thus regular)
• Acceptance problems

• ADFA
• ANFA
• AREX
• ACFG

• Emptiness problems
• EDFA
• ECFG

• Equivalence problems
• EQDFA

2 / 41



Review of decidable languages
• Context-free languages (and thus regular)
• Acceptance problems

• ADFA
• ANFA
• AREX
• ACFG

• Emptiness problems
• EDFA
• ECFG

• Equivalence problems
• EQDFA

2 / 41



Review of decidable languages
• Context-free languages (and thus regular)
• Acceptance problems

• ADFA
• ANFA
• AREX
• ACFG

• Emptiness problems
• EDFA
• ECFG

• Equivalence problems
• EQDFA

2 / 41



Review of undecidable languages
• The diagonal language Diag = {⟨M⟩ ∣ M is a TM and ⟨M⟩ ∉ L(M)}

• ATM
• HaltTM
• ETM
• ALLCFG
• EQCFG
• EQTM
• RegularTM

3 / 41



Review of undecidable languages
• The diagonal language Diag = {⟨M⟩ ∣ M is a TM and ⟨M⟩ ∉ L(M)}
• ATM

• HaltTM
• ETM
• ALLCFG
• EQCFG
• EQTM
• RegularTM

3 / 41



Review of undecidable languages
• The diagonal language Diag = {⟨M⟩ ∣ M is a TM and ⟨M⟩ ∉ L(M)}
• ATM
• HaltTM

• ETM
• ALLCFG
• EQCFG
• EQTM
• RegularTM

3 / 41



Review of undecidable languages
• The diagonal language Diag = {⟨M⟩ ∣ M is a TM and ⟨M⟩ ∉ L(M)}
• ATM
• HaltTM
• ETM

• ALLCFG
• EQCFG
• EQTM
• RegularTM

3 / 41



Review of undecidable languages
• The diagonal language Diag = {⟨M⟩ ∣ M is a TM and ⟨M⟩ ∉ L(M)}
• ATM
• HaltTM
• ETM
• ALLCFG

• EQCFG
• EQTM
• RegularTM

3 / 41



Review of undecidable languages
• The diagonal language Diag = {⟨M⟩ ∣ M is a TM and ⟨M⟩ ∉ L(M)}
• ATM
• HaltTM
• ETM
• ALLCFG
• EQCFG

• EQTM
• RegularTM

3 / 41



Review of undecidable languages
• The diagonal language Diag = {⟨M⟩ ∣ M is a TM and ⟨M⟩ ∉ L(M)}
• ATM
• HaltTM
• ETM
• ALLCFG
• EQCFG
• EQTM

• RegularTM

3 / 41



Review of undecidable languages
• The diagonal language Diag = {⟨M⟩ ∣ M is a TM and ⟨M⟩ ∉ L(M)}
• ATM
• HaltTM
• ETM
• ALLCFG
• EQCFG
• EQTM
• RegularTM

3 / 41



Turing recognizable (RE) and co-Turing-recognizable (coRE)
Recall, L is decidable iff L is RE and coRE

Language RE coRE

ADFA " "

EDFA " "

EQDFA " "

ACFG " "

ECFG " "

EQCFG $ "
Diag ? ?
ATM " $
HaltTM ? ?
ETM $ "
EQTM ? ?
RegularTM ? ?

4 / 41



Reductions
Recall that A reduces to B (written A ≤ B) means
“If B is decidable, then A is decidable”

We used reductions to
1 prove that languages are decidable (“good-news reductions”)
2 prove that languages are not decidable (“bad-news reductions”)

We were able to determine that some languages aren’t RE by showing that they’re
coRE but not decidable

Similarly, we proved some languages aren’t coRE by showing that they’re RE but not
decidable

Reductions alone were not sufficient; we need a stronger notion of reduction

5 / 41



Reductions
Recall that A reduces to B (written A ≤ B) means
“If B is decidable, then A is decidable”

We used reductions to
1 prove that languages are decidable (“good-news reductions”)
2 prove that languages are not decidable (“bad-news reductions”)

We were able to determine that some languages aren’t RE by showing that they’re
coRE but not decidable

Similarly, we proved some languages aren’t coRE by showing that they’re RE but not
decidable

Reductions alone were not sufficient; we need a stronger notion of reduction

5 / 41



Reductions
Recall that A reduces to B (written A ≤ B) means
“If B is decidable, then A is decidable”

We used reductions to
1 prove that languages are decidable (“good-news reductions”)
2 prove that languages are not decidable (“bad-news reductions”)

We were able to determine that some languages aren’t RE by showing that they’re
coRE but not decidable

Similarly, we proved some languages aren’t coRE by showing that they’re RE but not
decidable

Reductions alone were not sufficient; we need a stronger notion of reduction

5 / 41



Reductions
Recall that A reduces to B (written A ≤ B) means
“If B is decidable, then A is decidable”

We used reductions to
1 prove that languages are decidable (“good-news reductions”)
2 prove that languages are not decidable (“bad-news reductions”)

We were able to determine that some languages aren’t RE by showing that they’re
coRE but not decidable

Similarly, we proved some languages aren’t coRE by showing that they’re RE but not
decidable

Reductions alone were not sufficient; we need a stronger notion of reduction

5 / 41



Computable functions
A function f ∶ Σ∗

→ Σ∗ is a computable function if there is some TM M such that
when M is run on w, M halts with f(w) on the tape (and nothing else)

This is similar to a decider in that M cannot loop, but there’s no notion of accepting
or rejecting a string, M just computes a function

6 / 41



Examples of computable functions
• Arithmetic: ⟨k, m, n⟩ ↦ ⟨k ⋅ m − 67n⟩ where k, m, n ∈ Z

The corresponding TM performs the arithmetic and then copies the result to the
beginning of the tape and clears the rest

• Converting a grammar to CNF: ⟨G⟩ ↦ ⟨G′⟩ where L(G) = L(G′) and G
′ is in

CNF
The corresponding TM performs the conversion to CNF algorithm

• Constructing new TMs: ⟨M, w⟩ ↦ ⟨M ′⟩ where M
′ is the TM that ignores its

input and runs M on w

• Constructing multiple TMs: ⟨M⟩ ↦ ⟨M, M
′⟩ where M

′ is a TM such that
L(M ′) = Σ∗

Anything that a TM can do without looping, including running deciders, is permissible

If the form of the input is wrong (e.g., if the TM is expecting ⟨M, w⟩ but gets
something else), then it clears the tape and halts (i.e., outputs ε)

7 / 41



Examples of computable functions
• Arithmetic: ⟨k, m, n⟩ ↦ ⟨k ⋅ m − 67n⟩ where k, m, n ∈ Z

The corresponding TM performs the arithmetic and then copies the result to the
beginning of the tape and clears the rest

• Converting a grammar to CNF: ⟨G⟩ ↦ ⟨G′⟩ where L(G) = L(G′) and G
′ is in

CNF
The corresponding TM performs the conversion to CNF algorithm

• Constructing new TMs: ⟨M, w⟩ ↦ ⟨M ′⟩ where M
′ is the TM that ignores its

input and runs M on w

• Constructing multiple TMs: ⟨M⟩ ↦ ⟨M, M
′⟩ where M

′ is a TM such that
L(M ′) = Σ∗

Anything that a TM can do without looping, including running deciders, is permissible

If the form of the input is wrong (e.g., if the TM is expecting ⟨M, w⟩ but gets
something else), then it clears the tape and halts (i.e., outputs ε)

7 / 41



Examples of computable functions
• Arithmetic: ⟨k, m, n⟩ ↦ ⟨k ⋅ m − 67n⟩ where k, m, n ∈ Z

The corresponding TM performs the arithmetic and then copies the result to the
beginning of the tape and clears the rest

• Converting a grammar to CNF: ⟨G⟩ ↦ ⟨G′⟩ where L(G) = L(G′) and G
′ is in

CNF
The corresponding TM performs the conversion to CNF algorithm

• Constructing new TMs: ⟨M, w⟩ ↦ ⟨M ′⟩ where M
′ is the TM that ignores its

input and runs M on w

• Constructing multiple TMs: ⟨M⟩ ↦ ⟨M, M
′⟩ where M

′ is a TM such that
L(M ′) = Σ∗

Anything that a TM can do without looping, including running deciders, is permissible

If the form of the input is wrong (e.g., if the TM is expecting ⟨M, w⟩ but gets
something else), then it clears the tape and halts (i.e., outputs ε)

7 / 41



Examples of computable functions
• Arithmetic: ⟨k, m, n⟩ ↦ ⟨k ⋅ m − 67n⟩ where k, m, n ∈ Z

The corresponding TM performs the arithmetic and then copies the result to the
beginning of the tape and clears the rest

• Converting a grammar to CNF: ⟨G⟩ ↦ ⟨G′⟩ where L(G) = L(G′) and G
′ is in

CNF
The corresponding TM performs the conversion to CNF algorithm

• Constructing new TMs: ⟨M, w⟩ ↦ ⟨M ′⟩ where M
′ is the TM that ignores its

input and runs M on w

• Constructing multiple TMs: ⟨M⟩ ↦ ⟨M, M
′⟩ where M

′ is a TM such that
L(M ′) = Σ∗

Anything that a TM can do without looping, including running deciders, is permissible

If the form of the input is wrong (e.g., if the TM is expecting ⟨M, w⟩ but gets
something else), then it clears the tape and halts (i.e., outputs ε)

7 / 41



Examples of computable functions
• Arithmetic: ⟨k, m, n⟩ ↦ ⟨k ⋅ m − 67n⟩ where k, m, n ∈ Z

The corresponding TM performs the arithmetic and then copies the result to the
beginning of the tape and clears the rest

• Converting a grammar to CNF: ⟨G⟩ ↦ ⟨G′⟩ where L(G) = L(G′) and G
′ is in

CNF
The corresponding TM performs the conversion to CNF algorithm

• Constructing new TMs: ⟨M, w⟩ ↦ ⟨M ′⟩ where M
′ is the TM that ignores its

input and runs M on w

• Constructing multiple TMs: ⟨M⟩ ↦ ⟨M, M
′⟩ where M

′ is a TM such that
L(M ′) = Σ∗

Anything that a TM can do without looping, including running deciders, is permissible

If the form of the input is wrong (e.g., if the TM is expecting ⟨M, w⟩ but gets
something else), then it clears the tape and halts (i.e., outputs ε)

7 / 41



Examples of computable functions
• Arithmetic: ⟨k, m, n⟩ ↦ ⟨k ⋅ m − 67n⟩ where k, m, n ∈ Z

The corresponding TM performs the arithmetic and then copies the result to the
beginning of the tape and clears the rest

• Converting a grammar to CNF: ⟨G⟩ ↦ ⟨G′⟩ where L(G) = L(G′) and G
′ is in

CNF
The corresponding TM performs the conversion to CNF algorithm

• Constructing new TMs: ⟨M, w⟩ ↦ ⟨M ′⟩ where M
′ is the TM that ignores its

input and runs M on w

• Constructing multiple TMs: ⟨M⟩ ↦ ⟨M, M
′⟩ where M

′ is a TM such that
L(M ′) = Σ∗

Anything that a TM can do without looping, including running deciders, is permissible

If the form of the input is wrong (e.g., if the TM is expecting ⟨M, w⟩ but gets
something else), then it clears the tape and halts (i.e., outputs ε)

7 / 41



Mapping reducibility
Language A is mapping reducible to language B, written A ≤m B, if there exists a
computable function f ∶ Σ∗

→ Σ∗ such that for each w ∈ Σ∗,

w ∈ A ⟺ f(w) ∈ B

f ∶ Σ∗
→ Σ∗

Σ∗
A B

f maps elements of A to elements of B
f maps elements of A to elements of B

8 / 41



Mapping instances of problems to instances of other problems
Consider the problems

1 Is the string w recognized by the PDA P?
2 Is the string x generated by the CFG G?

We express both of these as languages, APDA and ACFG, respectively

An instance of the first problem is the (representation of the) pair ⟨P, w⟩ and an
instance of the second problem is ⟨G, x⟩

A mapping reduction A ≤m B takes an instance of problem A and maps it to an
instance of problem B such that the solution to the latter gives the solution to the
former

E.g., ⟨P, w⟩ ↦ ⟨G, w⟩ where L(G) = L(P ) is a computable mapping and
⟨P, w⟩ ∈ APDA ⟺ ⟨G, w⟩ ∈ ACFG so APDA ≤m ACFG

9 / 41



Question 1
Is ACFG ≤m APDA?

Yes. The mapping ⟨G, w⟩ ↦ ⟨P, w⟩ where L(P ) = L(G) is computable because the
CFG to PDA conversion is a simple algorithm.

As before, ⟨G, w⟩ ∈ ACFG ⟺ ⟨P, w⟩ ∈ APDA

10 / 41



Question 1
Is ACFG ≤m APDA?

Yes. The mapping ⟨G, w⟩ ↦ ⟨P, w⟩ where L(P ) = L(G) is computable because the
CFG to PDA conversion is a simple algorithm.

As before, ⟨G, w⟩ ∈ ACFG ⟺ ⟨P, w⟩ ∈ APDA

10 / 41



Question 2
Is ADFA ≤m ACFG?

Yes. We can convert a DFA to an equivalent CFG; i.e., ⟨M, w⟩ ↦ ⟨G, w⟩ where
L(G) = L(M) is computable and clearly ⟨M, w⟩ ∈ ADFA ⟺ ⟨G, w⟩ ∈ ACFG

11 / 41



Question 2
Is ADFA ≤m ACFG?

Yes. We can convert a DFA to an equivalent CFG; i.e., ⟨M, w⟩ ↦ ⟨G, w⟩ where
L(G) = L(M) is computable and clearly ⟨M, w⟩ ∈ ADFA ⟺ ⟨G, w⟩ ∈ ACFG

11 / 41



Question 3
Is ACFG ≤m ADFA?

Perhaps counterintuitively, yes!

Remember, ACFG is decidable so we can use the decider R for it when constructing our
mapping
T = “On input ⟨G, w⟩,

1 Run R on ⟨G, w⟩
2 If R accepts, let M be the 1-state DFA such that L(M) = Σ∗

3 If R rejects, let M be the 1-state DFA such that L(M) = ∅

4 Output ⟨M, ε⟩”

This won’t loop because R is a decider.

If ⟨G, w⟩ ∈ ACFG, then L(M) = Σ∗ so ⟨M, ε⟩ ∈ ADFA

If ⟨G, w⟩ ∉ ACFG, then L(M) = ∅ so ⟨M, ε⟩ ∉ ADFA

12 / 41



Question 3
Is ACFG ≤m ADFA?

Perhaps counterintuitively, yes!

Remember, ACFG is decidable so we can use the decider R for it when constructing our
mapping
T = “On input ⟨G, w⟩,

1 Run R on ⟨G, w⟩
2 If R accepts, let M be the 1-state DFA such that L(M) = Σ∗

3 If R rejects, let M be the 1-state DFA such that L(M) = ∅

4 Output ⟨M, ε⟩”

This won’t loop because R is a decider.

If ⟨G, w⟩ ∈ ACFG, then L(M) = Σ∗ so ⟨M, ε⟩ ∈ ADFA

If ⟨G, w⟩ ∉ ACFG, then L(M) = ∅ so ⟨M, ε⟩ ∉ ADFA
12 / 41



Mapping reductions are a stronger form of reduction
What we’ve called a reduction up until now is also called a Turing reduction

Theorem
If A ≤m B, then A ≤ B. In other words, if A ≤m B and B is decidable, then A is
decidable
How can we prove this?

Proof.
Let R be a decider for B and let f ∶ Σ∗

→ Σ∗ be the mapping reduction.
D = “On input w,

1 Compute f(w)
2 Run R on f(w) and if R accepts, then accept; otherwise reject”

f is computable and R is a decider so D is a decider.

If w ∈ A, then f(w) ∈ B so R and thus D will accept

If w ∉ A, then f(w) ∉ B so R and thus D will reject

13 / 41



Mapping reductions are a stronger form of reduction
What we’ve called a reduction up until now is also called a Turing reduction

Theorem
If A ≤m B, then A ≤ B. In other words, if A ≤m B and B is decidable, then A is
decidable
How can we prove this?
Proof.
Let R be a decider for B and let f ∶ Σ∗

→ Σ∗ be the mapping reduction.
D = “On input w,

1 Compute f(w)
2 Run R on f(w) and if R accepts, then accept; otherwise reject”

f is computable and R is a decider so D is a decider.

If w ∈ A, then f(w) ∈ B so R and thus D will accept

If w ∉ A, then f(w) ∉ B so R and thus D will reject
13 / 41



Using mapping reductions to show languages are undecidable
Just like with Turing reductions, we have a simple corollary:

Theorem
If A ≤m B and A is undecidable, then B is undecidable

We typically use this fact by giving a TM that computes the mapping reduction

T = “On input ⟨an instance of problem A⟩,
1 Construct an instance of problem B

2 Output ⟨the instance of problem B⟩”

Rather than accept or reject, the TM T corresponding to the mapping outputs the
result

14 / 41



Example: ETM ≤m EQTM

Show that ETM ≤m EQTM by giving a TM T that computes the mapping
How do we do this?

T = “On input ⟨M⟩,

1 Build TM M
′ such that L(M ′) = ∅

2 Output ⟨M, M
′⟩”

Note that ⟨M⟩ is an instance of ETM and ⟨M, M
′⟩ is an instance of EQTM

We need to show that T doesn’t loop and that ⟨M⟩ ∈ ETM iff ⟨M, M
′⟩ ∈ EQTM

Neither steps 1 nor 2 loop, so T doesn’t loop

Next, we have a chain of iff

⟨M⟩ ∈ ETM ⟺ L(M) = ∅ ⟺ L(M) = L(M ′) ⟺ ⟨M, M
′⟩ ∈ EQTM

15 / 41



Example: ETM ≤m EQTM

Show that ETM ≤m EQTM by giving a TM T that computes the mapping
How do we do this?

T = “On input ⟨M⟩,

1 Build TM M
′ such that L(M ′) = ∅

2 Output ⟨M, M
′⟩”

Note that ⟨M⟩ is an instance of ETM and ⟨M, M
′⟩ is an instance of EQTM

We need to show that T doesn’t loop and that ⟨M⟩ ∈ ETM iff ⟨M, M
′⟩ ∈ EQTM

Neither steps 1 nor 2 loop, so T doesn’t loop

Next, we have a chain of iff

⟨M⟩ ∈ ETM ⟺ L(M) = ∅ ⟺ L(M) = L(M ′) ⟺ ⟨M, M
′⟩ ∈ EQTM

15 / 41



Example: ETM ≤m EQTM

Show that ETM ≤m EQTM by giving a TM T that computes the mapping
How do we do this?

T = “On input ⟨M⟩,
1 Build TM M

′ such that L(M ′) = ∅

2 Output ⟨M, M
′⟩”

Note that ⟨M⟩ is an instance of ETM and ⟨M, M
′⟩ is an instance of EQTM

We need to show that T doesn’t loop and that ⟨M⟩ ∈ ETM iff ⟨M, M
′⟩ ∈ EQTM

Neither steps 1 nor 2 loop, so T doesn’t loop

Next, we have a chain of iff

⟨M⟩ ∈ ETM ⟺ L(M) = ∅ ⟺ L(M) = L(M ′) ⟺ ⟨M, M
′⟩ ∈ EQTM

15 / 41



Example: ETM ≤m EQTM

Show that ETM ≤m EQTM by giving a TM T that computes the mapping
How do we do this?

T = “On input ⟨M⟩,
1 Build TM M

′ such that L(M ′) = ∅

2 Output ⟨M, M
′⟩”

Note that ⟨M⟩ is an instance of ETM and ⟨M, M
′⟩ is an instance of EQTM

We need to show that T doesn’t loop and that ⟨M⟩ ∈ ETM iff ⟨M, M
′⟩ ∈ EQTM

Neither steps 1 nor 2 loop, so T doesn’t loop

Next, we have a chain of iff

⟨M⟩ ∈ ETM ⟺ L(M) = ∅ ⟺ L(M) = L(M ′) ⟺ ⟨M, M
′⟩ ∈ EQTM

15 / 41



Example: ETM ≤m EQTM

Show that ETM ≤m EQTM by giving a TM T that computes the mapping
How do we do this?

T = “On input ⟨M⟩,
1 Build TM M

′ such that L(M ′) = ∅

2 Output ⟨M, M
′⟩”

Note that ⟨M⟩ is an instance of ETM and ⟨M, M
′⟩ is an instance of EQTM

We need to show that T doesn’t loop and that ⟨M⟩ ∈ ETM iff ⟨M, M
′⟩ ∈ EQTM

Neither steps 1 nor 2 loop, so T doesn’t loop

Next, we have a chain of iff

⟨M⟩ ∈ ETM ⟺ L(M) = ∅ ⟺ L(M) = L(M ′) ⟺ ⟨M, M
′⟩ ∈ EQTM

15 / 41



Example: ETM ≤m EQTM

Show that ETM ≤m EQTM by giving a TM T that computes the mapping
How do we do this?

T = “On input ⟨M⟩,
1 Build TM M

′ such that L(M ′) = ∅

2 Output ⟨M, M
′⟩”

Note that ⟨M⟩ is an instance of ETM and ⟨M, M
′⟩ is an instance of EQTM

We need to show that T doesn’t loop and that ⟨M⟩ ∈ ETM iff ⟨M, M
′⟩ ∈ EQTM

Neither steps 1 nor 2 loop, so T doesn’t loop

Next, we have a chain of iff

⟨M⟩ ∈ ETM ⟺ L(M) = ∅ ⟺ L(M) = L(M ′) ⟺ ⟨M, M
′⟩ ∈ EQTM

15 / 41



Example: ETM ≤m EQTM

Show that ETM ≤m EQTM by giving a TM T that computes the mapping
How do we do this?

T = “On input ⟨M⟩,
1 Build TM M

′ such that L(M ′) = ∅

2 Output ⟨M, M
′⟩”

Note that ⟨M⟩ is an instance of ETM and ⟨M, M
′⟩ is an instance of EQTM

We need to show that T doesn’t loop and that ⟨M⟩ ∈ ETM iff ⟨M, M
′⟩ ∈ EQTM

Neither steps 1 nor 2 loop, so T doesn’t loop

Next, we have a chain of iff

⟨M⟩ ∈ ETM ⟺ L(M) = ∅ ⟺ L(M) = L(M ′) ⟺ ⟨M, M
′⟩ ∈ EQTM

15 / 41



Example: ATM ≤m HaltTM

This one is more tricky: Given ⟨M, w⟩ (an instance of ATM), we need to construct
⟨M ′

, w⟩ such that M accepts w iff M
′ halts on w

How can we do this?

T = “On input ⟨M, w⟩,
1 Construct a new TM M

′
= ‘On input x,

1 Run M on x
2 If M accepts, then accept
3 If M rejects, then loop’

2 Output ⟨M ′
, w⟩”

Constructing the TM M
′ can’t loop so T can’t loop

If ⟨M, w⟩ ∈ ATM, then M accepts w so M
′ accepts and thus halts on w so

⟨M ′
, w⟩ ∈ HaltTM

If ⟨M, w⟩ ∉ ATM, then either M rejects or loops on w and in either case, M
′ loops on

w [why?] so ⟨M ′
, w⟩ ∉ HaltTM

16 / 41



Example: ATM ≤m HaltTM

This one is more tricky: Given ⟨M, w⟩ (an instance of ATM), we need to construct
⟨M ′

, w⟩ such that M accepts w iff M
′ halts on w

How can we do this?

T = “On input ⟨M, w⟩,
1 Construct a new TM M

′
= ‘On input x,

1 Run M on x
2 If M accepts, then accept
3 If M rejects, then loop’

2 Output ⟨M ′
, w⟩”

Constructing the TM M
′ can’t loop so T can’t loop

If ⟨M, w⟩ ∈ ATM, then M accepts w so M
′ accepts and thus halts on w so

⟨M ′
, w⟩ ∈ HaltTM

If ⟨M, w⟩ ∉ ATM, then either M rejects or loops on w and in either case, M
′ loops on

w [why?] so ⟨M ′
, w⟩ ∉ HaltTM

16 / 41



Example: ATM ≤m HaltTM

This one is more tricky: Given ⟨M, w⟩ (an instance of ATM), we need to construct
⟨M ′

, w⟩ such that M accepts w iff M
′ halts on w

How can we do this?

T = “On input ⟨M, w⟩,
1 Construct a new TM M

′
= ‘On input x,

1 Run M on x
2 If M accepts, then accept
3 If M rejects, then loop’

2 Output ⟨M ′
, w⟩”

Constructing the TM M
′ can’t loop so T can’t loop

If ⟨M, w⟩ ∈ ATM, then M accepts w so M
′ accepts and thus halts on w so

⟨M ′
, w⟩ ∈ HaltTM

If ⟨M, w⟩ ∉ ATM, then either M rejects or loops on w and in either case, M
′ loops on

w [why?] so ⟨M ′
, w⟩ ∉ HaltTM

16 / 41



Example: EQCFG ≤m EQTM

How do we show this?

T = “On input ⟨G1, G2⟩,
1 Construct TM M1 s.t. L(M1) = L(G1) (we can use the decider for ACFG to do

this)
2 Construct TM M2 s.t. L(M2) = L(G2)
3 Output ⟨M1, M2⟩”

Now what?
T can’t loop because it’s just constructing two TMs

Since L(Gi) = L(Mi), ⟨G1, G2⟩ ∈ EQCFG ⟺ L(G1) = L(G2) ⟺ L(M1) =
L(M2) ⟺ ⟨M1, M2⟩ ∈ EQTM

17 / 41



Example: EQCFG ≤m EQTM

How do we show this?
T = “On input ⟨G1, G2⟩,

1 Construct TM M1 s.t. L(M1) = L(G1) (we can use the decider for ACFG to do
this)

2 Construct TM M2 s.t. L(M2) = L(G2)
3 Output ⟨M1, M2⟩”

Now what?

T can’t loop because it’s just constructing two TMs

Since L(Gi) = L(Mi), ⟨G1, G2⟩ ∈ EQCFG ⟺ L(G1) = L(G2) ⟺ L(M1) =
L(M2) ⟺ ⟨M1, M2⟩ ∈ EQTM

17 / 41



Example: EQCFG ≤m EQTM

How do we show this?
T = “On input ⟨G1, G2⟩,

1 Construct TM M1 s.t. L(M1) = L(G1) (we can use the decider for ACFG to do
this)

2 Construct TM M2 s.t. L(M2) = L(G2)
3 Output ⟨M1, M2⟩”

Now what?
T can’t loop because it’s just constructing two TMs

Since L(Gi) = L(Mi), ⟨G1, G2⟩ ∈ EQCFG ⟺ L(G1) = L(G2) ⟺ L(M1) =
L(M2) ⟺ ⟨M1, M2⟩ ∈ EQTM

17 / 41



Mapping reductions between RE languages

Theorem
If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.
How do we prove this?

Same construction as for the decidable case.

Proof.
Let R be a TM such that L(R) = B and f ∶ Σ∗

→ Σ∗ be the computable mapping.
Build TM M to recognize A:
M = “On input w,

1 Run R on f(w). If R accepts, then accept; if R rejects, then reject”

Now we just need to show that L(M) = A

w ∈ A ⟺ f(w) ∈ B ⟺ R accepts f(w) ⟺ M accepts w.

18 / 41



Mapping reductions between RE languages

Theorem
If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.
How do we prove this? Same construction as for the decidable case.

Proof.
Let R be a TM such that L(R) = B and f ∶ Σ∗

→ Σ∗ be the computable mapping.
Build TM M to recognize A:
M = “On input w,

1 Run R on f(w). If R accepts, then accept; if R rejects, then reject”

Now we just need to show that L(M) = A

w ∈ A ⟺ f(w) ∈ B ⟺ R accepts f(w) ⟺ M accepts w.

18 / 41



Proving that a language is not RE

Theorem
If A ≤m B and A is not Turing-recognizable, then B is not Turing-recognizable
Why?

Proof.
If B were RE, then by the previous theorem, A would be RE.

19 / 41



Proving that a language is not RE

Theorem
If A ≤m B and A is not Turing-recognizable, then B is not Turing-recognizable
Why?

Proof.
If B were RE, then by the previous theorem, A would be RE.

19 / 41



Mapping reduction between complements

Theorem
If A ≤m B, then A ≤m B with the reduction given by the same mapping.

We just use the fact that if f is the computable mapping, then w ∈ A ⟺ f(w) ∈ B

Proof.
Let f be the mapping reduction from A to B. Then

w ∈ A ⟺ w ∉ A ⟺ f(w) ∉ B ⟺ f(w) ∈ B.

20 / 41



Mapping reduction between complements

Theorem
If A ≤m B, then A ≤m B with the reduction given by the same mapping.

We just use the fact that if f is the computable mapping, then w ∈ A ⟺ f(w) ∈ B

Proof.
Let f be the mapping reduction from A to B. Then

w ∈ A ⟺ w ∉ A ⟺ f(w) ∉ B ⟺ f(w) ∈ B.

20 / 41



coRE

Theorem
If A ≤m B and B is co-Turing-recognizable, then A is co-Turing-recognizable.
Why?

Proof.
By the previous theorem, A ≤m B.

Since B is coRE, B is RE and thus A is RE. Therefore, A is coRE.

21 / 41



coRE

Theorem
If A ≤m B and B is co-Turing-recognizable, then A is co-Turing-recognizable.
Why?

Proof.
By the previous theorem, A ≤m B.

Since B is coRE, B is RE and thus A is RE. Therefore, A is coRE.

21 / 41



Not coRE

Theorem
If A ≤m B and A is not co-Turing-recognizable, then B is not co-Turing-recognizable.

Proof.
If B were coRE, then A would be coRE by the previous theorem.

22 / 41



Recapitulate our results
A and B are languages and A ≤m B.

Good-news reductions
• If B is decidable, then A is decidable
• If B is RE, then A is RE
• If B is coRE, then A is coRE

Bad-news reductions
• If A is not decidable, then B is not decidable
• If A is not RE, then B is not RE
• If A is not coRE, then B is not coRE

23 / 41



Example
Show ATM ≤m ETM

We need to give a TM that takes as input an instance of ATM and outputs an instance
of ETM
T = “On input ⟨M, w⟩,

1 Construct TM Mw = ‘On input x,
1 Ignore x and run M on w. If M accepts, then accept; if M rejects, then reject’

2 Output ⟨Mw⟩”

This is clearly computable (i.e., T doesn’t loop)

Now we just need to show that ⟨M, w⟩ ∈ ATM iff ⟨Mw⟩ ∈ ETM

If ⟨M, w⟩ ∈ ATM, then M accepts w so L(Mw) = Σ∗ and thus ⟨Mw⟩ ∈ ETM

If ⟨M, w⟩ ∉ ATM, then M doesn’t accept w so L(Mw) = ∅ and thus ⟨Mw⟩ ∉ ETM

24 / 41



Example
Show ATM ≤m ETM

We need to give a TM that takes as input an instance of ATM and outputs an instance
of ETM

T = “On input ⟨M, w⟩,
1 Construct TM Mw = ‘On input x,

1 Ignore x and run M on w. If M accepts, then accept; if M rejects, then reject’
2 Output ⟨Mw⟩”

This is clearly computable (i.e., T doesn’t loop)

Now we just need to show that ⟨M, w⟩ ∈ ATM iff ⟨Mw⟩ ∈ ETM

If ⟨M, w⟩ ∈ ATM, then M accepts w so L(Mw) = Σ∗ and thus ⟨Mw⟩ ∈ ETM

If ⟨M, w⟩ ∉ ATM, then M doesn’t accept w so L(Mw) = ∅ and thus ⟨Mw⟩ ∉ ETM

24 / 41



Example
Show ATM ≤m ETM

We need to give a TM that takes as input an instance of ATM and outputs an instance
of ETM
T = “On input ⟨M, w⟩,

1 Construct TM Mw = ‘On input x,
1 Ignore x and run M on w. If M accepts, then accept; if M rejects, then reject’

2 Output ⟨Mw⟩”

This is clearly computable (i.e., T doesn’t loop)

Now we just need to show that ⟨M, w⟩ ∈ ATM iff ⟨Mw⟩ ∈ ETM

If ⟨M, w⟩ ∈ ATM, then M accepts w so L(Mw) = Σ∗ and thus ⟨Mw⟩ ∈ ETM

If ⟨M, w⟩ ∉ ATM, then M doesn’t accept w so L(Mw) = ∅ and thus ⟨Mw⟩ ∉ ETM

24 / 41



Example
Show ATM ≤m ETM

We need to give a TM that takes as input an instance of ATM and outputs an instance
of ETM
T = “On input ⟨M, w⟩,

1 Construct TM Mw = ‘On input x,
1 Ignore x and run M on w. If M accepts, then accept; if M rejects, then reject’

2 Output ⟨Mw⟩”

This is clearly computable (i.e., T doesn’t loop)

Now we just need to show that ⟨M, w⟩ ∈ ATM iff ⟨Mw⟩ ∈ ETM

If ⟨M, w⟩ ∈ ATM, then M accepts w so L(Mw) = Σ∗ and thus ⟨Mw⟩ ∈ ETM

If ⟨M, w⟩ ∉ ATM, then M doesn’t accept w so L(Mw) = ∅ and thus ⟨Mw⟩ ∉ ETM

24 / 41



One missing detail
What happens if the input to our T does not have the form ⟨M, w⟩?

We said it outputs ε but that’s actually a problem; why?

ε ∈ ETM

We need to modify T :
T = “On input w,

1 If w isn’t of the form ⟨M, w⟩, then output ⟨M ′⟩ where L(M ′) = ∅

2 Otherwise, construct Mw = ‘On input x,
1 Run M on w. If M accepts, then accept; if M rejects, then reject’

3 Output ⟨Mw⟩”
Now strings that don’t have the appropriate form for ATM are mapped to something
that’s not in ETM

25 / 41



One missing detail
What happens if the input to our T does not have the form ⟨M, w⟩?

We said it outputs ε but that’s actually a problem; why?

ε ∈ ETM

We need to modify T :
T = “On input w,

1 If w isn’t of the form ⟨M, w⟩, then output ⟨M ′⟩ where L(M ′) = ∅

2 Otherwise, construct Mw = ‘On input x,
1 Run M on w. If M accepts, then accept; if M rejects, then reject’

3 Output ⟨Mw⟩”
Now strings that don’t have the appropriate form for ATM are mapped to something
that’s not in ETM

25 / 41



One missing detail
What happens if the input to our T does not have the form ⟨M, w⟩?

We said it outputs ε but that’s actually a problem; why?

ε ∈ ETM

We need to modify T :
T = “On input w,

1 If w isn’t of the form ⟨M, w⟩, then output ⟨M ′⟩ where L(M ′) = ∅

2 Otherwise, construct Mw = ‘On input x,
1 Run M on w. If M accepts, then accept; if M rejects, then reject’

3 Output ⟨Mw⟩”
Now strings that don’t have the appropriate form for ATM are mapped to something
that’s not in ETM

25 / 41



Example
We showed that ATM ≤ ETM when we proved that ETM is undecidable; show that
ATM /≤m ETM
How do we show this?

By contradiction. Assume that ATM ≤m ETM. We previously showed that ETM is
coRE so therefore ATM is coRE. But this is a contradiction because we also proved
that ATM is not coRE

26 / 41



Example
We showed that ATM ≤ ETM when we proved that ETM is undecidable; show that
ATM /≤m ETM
How do we show this?

By contradiction. Assume that ATM ≤m ETM. We previously showed that ETM is
coRE so therefore ATM is coRE. But this is a contradiction because we also proved
that ATM is not coRE

26 / 41



Languages that are neither RE nor coRE
So far, we’ve seen languages like ATM that are RE but not coRE and languages like
ETM that are coRE but not RE

It’s reasonable to ask if a language must be either RE or coRE. The answer is no

The language EQTM is neither RE nor coRE

To prove this, we want to find two languages A and B such that A ≤m EQTM and
B ≤m EQTM where A is not RE and B is not coRE

27 / 41



Languages that are neither RE nor coRE
So far, we’ve seen languages like ATM that are RE but not coRE and languages like
ETM that are coRE but not RE

It’s reasonable to ask if a language must be either RE or coRE. The answer is no

The language EQTM is neither RE nor coRE

To prove this, we want to find two languages A and B such that A ≤m EQTM and
B ≤m EQTM where A is not RE and B is not coRE

27 / 41



EQTM is not RE
We already showed ETM ≤m EQTM and ETM is not RE so EQTM is not RE

28 / 41



EQTM is not coRE
This one is a bit trickier. Let’s mapping reduce ATM to EQTM
How do we do this?

T = “On input ⟨M, w⟩,
1 Construct TM M1 = ‘On input x,

1 If x ≠ w, then reject
2 Run M on w. If M accepts, then accept; if M rejects, then reject’

2 Construct TM M2 = ‘On input x,
1 If x = w, then accept; otherwise reject’

3 Output ⟨M1, M2⟩”

If ⟨M, w⟩ ∈ ATM, then M accepts w so L(M1) = {w}. If ⟨M, w⟩ ∉ ATM, then M
does not accept w so L(M1) = ∅

Regardless of M , the language of M2 is L(M2) = {w}.

Thus ⟨M, w⟩ ∈ ATM iff ⟨M1, M2⟩ ∈ EQTM

29 / 41



EQTM is not coRE
This one is a bit trickier. Let’s mapping reduce ATM to EQTM
How do we do this?

T = “On input ⟨M, w⟩,
1 Construct TM M1 = ‘On input x,

1 If x ≠ w, then reject
2 Run M on w. If M accepts, then accept; if M rejects, then reject’

2 Construct TM M2 = ‘On input x,
1 If x = w, then accept; otherwise reject’

3 Output ⟨M1, M2⟩”

If ⟨M, w⟩ ∈ ATM, then M accepts w so L(M1) = {w}. If ⟨M, w⟩ ∉ ATM, then M
does not accept w so L(M1) = ∅

Regardless of M , the language of M2 is L(M2) = {w}.

Thus ⟨M, w⟩ ∈ ATM iff ⟨M1, M2⟩ ∈ EQTM

29 / 41



EQTM is not coRE
This one is a bit trickier. Let’s mapping reduce ATM to EQTM
How do we do this?

T = “On input ⟨M, w⟩,
1 Construct TM M1 = ‘On input x,

1 If x ≠ w, then reject
2 Run M on w. If M accepts, then accept; if M rejects, then reject’

2 Construct TM M2 = ‘On input x,
1 If x = w, then accept; otherwise reject’

3 Output ⟨M1, M2⟩”

If ⟨M, w⟩ ∈ ATM, then M accepts w so L(M1) = {w}. If ⟨M, w⟩ ∉ ATM, then M
does not accept w so L(M1) = ∅

Regardless of M , the language of M2 is L(M2) = {w}.

Thus ⟨M, w⟩ ∈ ATM iff ⟨M1, M2⟩ ∈ EQTM
29 / 41



Question 4
Is there a RE language A such that EQTM ≤m A? Why or why not?

No. EQTM is not RE, so any A such that EQTM ≤m A is also not RE

30 / 41



Question 4
Is there a RE language A such that EQTM ≤m A? Why or why not?

No. EQTM is not RE, so any A such that EQTM ≤m A is also not RE

30 / 41



Question 5
Is there a coRE language B such that B ≤m EQTM? Why or why not?

Yes. We showed ETM ≤m EQTM and ETM is coRE

31 / 41



Question 5
Is there a coRE language B such that B ≤m EQTM? Why or why not?

Yes. We showed ETM ≤m EQTM and ETM is coRE

31 / 41



Question 6
If C is a language and EQTM ≤m C, what can we conclude about C?

C is neither RE nor coRE

32 / 41



Question 6
If C is a language and EQTM ≤m C, what can we conclude about C?

C is neither RE nor coRE

32 / 41



Question 7
True or false: If D ≤ E, then D ≤m E.

False. ATM ≤ ETM but ATM /≤m ETM

33 / 41



Question 7
True or false: If D ≤ E, then D ≤m E.

False. ATM ≤ ETM but ATM /≤m ETM

33 / 41



Question 8
Tricky! If F ≤m Σ∗, what can we conclude about F?

F = Σ∗. Let f be the mapping. Then w ∈ F ⟺ f(w) ∈ Σ∗

For any language other than Σ∗, there’s some string x not in the language but then
f(x) /∈ Σ∗; but every string is in Σ∗

34 / 41



Question 8
Tricky! If F ≤m Σ∗, what can we conclude about F?

F = Σ∗. Let f be the mapping. Then w ∈ F ⟺ f(w) ∈ Σ∗

For any language other than Σ∗, there’s some string x not in the language but then
f(x) /∈ Σ∗; but every string is in Σ∗

34 / 41



Question 9
Tricky! If Σ∗

≤m G, what can we conclude about G?

We know G ≠ ∅.

Since every string w ∈ Σ∗ needs to be mapped to an element of G, G cannot be empty

35 / 41



Question 9
Tricky! If Σ∗

≤m G, what can we conclude about G?

We know G ≠ ∅.

Since every string w ∈ Σ∗ needs to be mapped to an element of G, G cannot be empty

35 / 41



Updated table

Before today’s lecture

Language RE coRE

ADFA " "

EDFA " "

EQDFA " "

ACFG " "

ECFG " "

EQCFG $ "
Diag ? ?
ATM " $
HaltTM ? ?
ETM $ "
EQTM ? ?
RegularTM ? ?

Now

Language RE coRE

ADFA " "

EDFA " "

EQDFA " "

ACFG " "

ECFG " "

EQCFG $ "
Diag ? ?
ATM " $

HaltTM ? $

ETM $ "

EQTM $ $
RegularTM ? ?

36 / 41



HaltTM is RE
It’s easy to show that HaltTM is RE

1 Construct a TM that recognizes HaltTM
H = “On input ⟨M, w⟩,

1 Run M on w. If M halts, then accept”

2 Mapping reduce HaltTM to ATM
T = “On input ⟨M, w⟩,

1 Construct TM M
′
= ‘On input x,

1 Run M on x. If M halts, then accept’
2 Output ⟨M ′

, w⟩”

37 / 41



HaltTM is RE
It’s easy to show that HaltTM is RE

1 Construct a TM that recognizes HaltTM
H = “On input ⟨M, w⟩,

1 Run M on w. If M halts, then accept”
2 Mapping reduce HaltTM to ATM

T = “On input ⟨M, w⟩,
1 Construct TM M

′
= ‘On input x,

1 Run M on x. If M halts, then accept’
2 Output ⟨M ′

, w⟩”

37 / 41



Turning a Turing reduction into a mapping reduction
If the Turing reduction A ≤ B looks like:

Let R decide B and construct TM M to decide A:
M = “On input w,

1 Construct some instance w
′ of B

2 Run R on w
′ and if R accepts, then accept; otherwise reject”

then we can turn that into a mapping reduction

T = “On input w,
1 Construct some instance w

′ of B

2 Output w
′”

Note that R must be used exactly one time and M accepts iff R accepts

38 / 41



Turning a Turing reduction into a mapping reduction
If the Turing reduction A ≤ B looks like:

Let R decide B and construct TM M to decide A:
M = “On input w,

1 Construct some instance w
′ of B

2 Run R on w
′ and if R accepts, then accept; otherwise reject”

then we can turn that into a mapping reduction

T = “On input w,
1 Construct some instance w

′ of B

2 Output w
′”

Note that R must be used exactly one time and M accepts iff R accepts

38 / 41



Turning a Turing reduction into a mapping reduction
If the Turing reduction A ≤ B looks like:

Let R decide B and construct TM M to decide A:
M = “On input w,

1 Construct some instance w
′ of B

2 Run R on w
′ and if R accepts, then accept; otherwise reject”

then we can turn that into a mapping reduction

T = “On input w,
1 Construct some instance w

′ of B

2 Output w
′”

Note that R must be used exactly one time and M accepts iff R accepts

38 / 41



RegularTM is not coRE
We can turn our reduction ATM ≤ RegularTM into a mapping reduction
ATM ≤m RegularTM

T = “On input ⟨M, w⟩,
1 Construct TM M

′
= ‘On input x,

1 If x = 0n1n for some n, then accept
2 Otherwise, run M on w and if M accepts, then accept; if M rejects, then reject’

2 Output ⟨M ′⟩”

⟨M, w⟩ ∈ ATM ⟺ L(M ′) = Σ∗
⟺ L(M ′) is regular ⟺ ⟨M ′⟩ ∈ RegularTM

ATM is not coRE, so RegularTM is not coRE

39 / 41



RegularTM is not coRE
We can turn our reduction ATM ≤ RegularTM into a mapping reduction
ATM ≤m RegularTM

T = “On input ⟨M, w⟩,
1 Construct TM M

′
= ‘On input x,

1 If x = 0n1n for some n, then accept
2 Otherwise, run M on w and if M accepts, then accept; if M rejects, then reject’

2 Output ⟨M ′⟩”

⟨M, w⟩ ∈ ATM ⟺ L(M ′) = Σ∗
⟺ L(M ′) is regular ⟺ ⟨M ′⟩ ∈ RegularTM

ATM is not coRE, so RegularTM is not coRE

39 / 41



RegularTM is not coRE
We can turn our reduction ATM ≤ RegularTM into a mapping reduction
ATM ≤m RegularTM

T = “On input ⟨M, w⟩,
1 Construct TM M

′
= ‘On input x,

1 If x = 0n1n for some n, then accept
2 Otherwise, run M on w and if M accepts, then accept; if M rejects, then reject’

2 Output ⟨M ′⟩”

⟨M, w⟩ ∈ ATM ⟺ L(M ′) = Σ∗
⟺ L(M ′) is regular ⟺ ⟨M ′⟩ ∈ RegularTM

ATM is not coRE, so RegularTM is not coRE

39 / 41



RegularTM is not RE
We could reduce from ETM, but it’s simpler to reduce from ATM
T = “On input s,

1 If s ≠ ⟨M, w⟩ for some TM M and input w, let M
′ be a TM such that

L(M ′) = ∅

2 Otherwise, construct TM M
′
= ‘On input x,

1 If x ≠ 0n1n for some n, then reject
2 Run M on w and if M accepts, then accept; if M rejects, then reject’

3 Output ⟨M ′⟩”

Three cases

1 If s ∈ ATM but s ≠ ⟨M, w⟩, then L(M) = ∅ and ⟨M ′⟩ ∈ RegularTM

2 If s = ⟨M, w⟩ ∈ ATM, then w ∉ L(M) so L(M ′) = ∅ and ⟨M ′⟩ ∈ RegularTM

3 If s ∉ ATM, then s = ⟨M, w⟩ and w ∈ L(M). In this case,
L(M ′) = {0n1n ∣ n ≥ 0} so ⟨M ′⟩ ∉ RegularTM

Since ATM is not RE, RegularTM is not RE

40 / 41



RegularTM is not RE
We could reduce from ETM, but it’s simpler to reduce from ATM
T = “On input s,

1 If s ≠ ⟨M, w⟩ for some TM M and input w, let M
′ be a TM such that

L(M ′) = ∅

2 Otherwise, construct TM M
′
= ‘On input x,

1 If x ≠ 0n1n for some n, then reject
2 Run M on w and if M accepts, then accept; if M rejects, then reject’

3 Output ⟨M ′⟩”

Three cases
1 If s ∈ ATM but s ≠ ⟨M, w⟩, then L(M) = ∅ and ⟨M ′⟩ ∈ RegularTM

2 If s = ⟨M, w⟩ ∈ ATM, then w ∉ L(M) so L(M ′) = ∅ and ⟨M ′⟩ ∈ RegularTM

3 If s ∉ ATM, then s = ⟨M, w⟩ and w ∈ L(M). In this case,
L(M ′) = {0n1n ∣ n ≥ 0} so ⟨M ′⟩ ∉ RegularTM

Since ATM is not RE, RegularTM is not RE

40 / 41



RegularTM is not RE
We could reduce from ETM, but it’s simpler to reduce from ATM
T = “On input s,

1 If s ≠ ⟨M, w⟩ for some TM M and input w, let M
′ be a TM such that

L(M ′) = ∅

2 Otherwise, construct TM M
′
= ‘On input x,

1 If x ≠ 0n1n for some n, then reject
2 Run M on w and if M accepts, then accept; if M rejects, then reject’

3 Output ⟨M ′⟩”

Three cases
1 If s ∈ ATM but s ≠ ⟨M, w⟩, then L(M) = ∅ and ⟨M ′⟩ ∈ RegularTM

2 If s = ⟨M, w⟩ ∈ ATM, then w ∉ L(M) so L(M ′) = ∅ and ⟨M ′⟩ ∈ RegularTM

3 If s ∉ ATM, then s = ⟨M, w⟩ and w ∈ L(M). In this case,
L(M ′) = {0n1n ∣ n ≥ 0} so ⟨M ′⟩ ∉ RegularTM

Since ATM is not RE, RegularTM is not RE

40 / 41



RegularTM is not RE
We could reduce from ETM, but it’s simpler to reduce from ATM
T = “On input s,

1 If s ≠ ⟨M, w⟩ for some TM M and input w, let M
′ be a TM such that

L(M ′) = ∅

2 Otherwise, construct TM M
′
= ‘On input x,

1 If x ≠ 0n1n for some n, then reject
2 Run M on w and if M accepts, then accept; if M rejects, then reject’

3 Output ⟨M ′⟩”

Three cases
1 If s ∈ ATM but s ≠ ⟨M, w⟩, then L(M) = ∅ and ⟨M ′⟩ ∈ RegularTM

2 If s = ⟨M, w⟩ ∈ ATM, then w ∉ L(M) so L(M ′) = ∅ and ⟨M ′⟩ ∈ RegularTM

3 If s ∉ ATM, then s = ⟨M, w⟩ and w ∈ L(M). In this case,
L(M ′) = {0n1n ∣ n ≥ 0} so ⟨M ′⟩ ∉ RegularTM

Since ATM is not RE, RegularTM is not RE

40 / 41



Updated table

Before today’s lecture

Language RE coRE

ADFA " "

EDFA " "

EQDFA " "

ACFG " "

ECFG " "

EQCFG $ "
Diag ? ?
ATM " $
HaltTM ? ?
ETM $ "
EQTM ? ?
RegularTM ? ?

Now

Language RE coRE

ADFA " "

EDFA " "

EQDFA " "

ACFG " "

ECFG " "

EQCFG $ "
Diag ? ?
ATM " $

HaltTM " $

ETM $ "

EQTM $ $

RegularTM $ $

41 / 41


	Review
	Computable functions
	Mapping reducibility
	Turing recognizable languages and mapping reductions
	Neither RE nor coRE
	Questions

