CS 383
 Lecture 20 - Reductions

Stephen Checkoway

Fall 2023

Reductions

Reductions are a way of saying, "If problem B can be solved, then problem A can as well"

Reductions

Reductions are a way of saying, "If problem B can be solved, then problem A can as well"

Example:
A: Passing CS 383
B : Getting good grades on assignments, labs, and exams
We say that A reduces to B (i.e., the problem of passing CS 383 reduces to the problem of getting good grades) because

- If you get good grades, then you will pass
- If you fail, then you did not get good grades (contrapositive)

Reductions

Reductions are a way of saying, "If problem B can be solved, then problem A can as well"

Example:
A: Passing CS 383
B : Getting good grades on assignments, labs, and exams
We say that A reduces to B (i.e., the problem of passing CS 383 reduces to the problem of getting good grades) because

- If you get good grades, then you will pass
- If you fail, then you did not get good grades (contrapositive)

But note:

- Passing CS 383 doesn't say anything about your grade
- Getting bad grades doesn't mean you'll fail

Reduction of languages

We say language A reduces to language B (written $A \leq B$) to mean
"If B is decidable, then A is decidable"

We use a reduction $A \leq B$ in two different ways

- Proving that language A is decidable. "Good-news reduction." If B is decidable, then A is decidable
- Proving that language B is undecidable. "Bad-news reduction." If A is undecidable, then B is undecidable

"Good-news reduction"

To prove that language A is decidable, we need to build a TM D that decides it
If B is a decidable language, we can let R be a TM that decides B and use it as a subroutine in D
$D=$ "On input \qquad _,
(1) Using the input, construct some input for R
(2) Run R on that input (it's possible we need to use R multiple times)
(3) Make some decision to accept or reject based on the outcome of R "

Now we just need to prove that $L(D)=A$ and that D is a decider
In this way, we have reduced A to B (i.e., $A \leq B$)

"Bad-news reduction"

To prove that language B is undecidable, we need to pick an undecidable language A and show that $A \leq B$

We start by assuming that B is decidable
Just as with the good-news reduction, we let R be a decider for B and use it as subroutine to construct a decider for A
$D=$ "On input \qquad ,
(1) Using the input, construct some input for R
(2) Run R on that input (it's possible we need to use R multiple times)
(3) Make some decision to accept or reject based on the outcome of R "

Now we just need to prove that $L(D)=A$ and that D is a decider

Since A is undecidable and we were able to construct a decider for it, our assumption that B is decidable must be wrong

Good-news reductions we've already seen

- $A_{\text {NFA }} \leq A_{\text {DFA }}$
- $A_{\mathrm{REX}} \leq A_{\text {NFA }}$
- $E Q_{\text {DFA }} \leq E_{\text {DFA }}$
- Every regular language $A \leq A_{\text {DFA }}$
- Every context-free language $A \leq A_{\text {CFG }}$

Bad-news reductions we've already seen

- DIAG $\leq A_{\text {TM }}$
- $A_{\text {TM }} \leq$ Halt $_{\text {TM }}$
- $A_{\text {TM }} \leq E_{\text {TM }}$

Equality of TMs

Let's prove that

$$
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2} \text { are TMs and } L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
$$

is undecidable

Let's perform a bad-news reduction from E_{TM}

Proof.

Assume that $E Q_{\mathrm{TM}}$ is decided by some TM R and build a TM to decide E_{TM} : $D=$ "On input $\langle M\rangle$,

Equality of TMs

Let's prove that

$$
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2} \text { are TMs and } L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
$$

is undecidable

Let's perform a bad-news reduction from E_{TM}

Proof.

Assume that $E Q_{\mathrm{TM}}$ is decided by some TM R and build a TM to decide E_{TM} : $D=$ "On input $\langle M\rangle$,
(1) Construct TM M^{\prime} such that $L\left(M^{\prime}\right)=\varnothing$

Equality of TMs

Let's prove that

$$
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2} \text { are TMs and } L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
$$

is undecidable

Let's perform a bad-news reduction from E_{TM}

Proof.

Assume that $E Q_{\mathrm{TM}}$ is decided by some TM R and build a TM to decide E_{TM} : $D=$ "On input $\langle M\rangle$,
(1) Construct TM M^{\prime} such that $L\left(M^{\prime}\right)=\varnothing$
(2) Run R on $\left\langle M, M^{\prime}\right\rangle$

Equality of TMs

Let's prove that

$$
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2} \text { are TMs and } L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
$$

is undecidable

Let's perform a bad-news reduction from E_{TM}

Proof.

Assume that $E Q_{\mathrm{TM}}$ is decided by some TM R and build a TM to decide E_{TM} : $D=$ "On input $\langle M\rangle$,
(1) Construct TM M^{\prime} such that $L\left(M^{\prime}\right)=\varnothing$
(2) Run R on $\left\langle M, M^{\prime}\right\rangle$
(3) If R accepts, then accept; otherwise reject"

Since R is a decider, D is a decider
Clearly D accepts $\langle M\rangle$ iff R accepts $\left\langle M, M^{\prime}\right\rangle$ iff $L(M)=\varnothing$ so $L(D)=E_{\mathrm{TM}}$

Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then $A \leq B$ How do we do this? Try to prove it

Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then $A \leq B$
How do we do this? Try to prove it
Hint: You want to prove that the logical proposition " B is decidable implies A is decidable" is true

Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then $A \leq B$
How do we do this? Try to prove it

Hint: You want to prove that the logical proposition " B is decidable implies A is decidable" is true

Hint 2: The proposition $P \Longrightarrow$ true is true

Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then $A \leq B$
How do we do this? Try to prove it

Hint: You want to prove that the logical proposition " B is decidable implies A is decidable" is true

Hint 2: The proposition $P \Longrightarrow$ true is true

Proof.
Since A is decidable, then the implication " B is decidable implies A is decidable" is always true.

More general statement: If A is decidable and B is arbitrary, then $A \leq B$. Same proof.

Checking if the language of a TM is regular

Theorem
Regulartm $^{\prime}=\{\langle M\rangle \mid M$ is a $T M$ and $L(M)$ is regular $\}$ is undecidable
To prove this, we want to perform a bad-news reduction from some undecidable language

A useful technique for languages involving properties of languages of TMs (here the property is that the language is regular) involves reducing from $A_{\text {TM }}$

Given a TM M and a string w, we want to construct a new TM M^{\prime} such that the language of M^{\prime} is regular if $w \in L(M)$ and is nonregular if $w \notin L(M)$

Proof

Let's construct a TM whose language is $\{0,1\}^{*}$ if $w \in L(M)$ and is $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ if $w \notin L(M)$
Proof.
Assume that Regulartm is decided by some TM R. Build D to decide $A_{\text {TM }}$ $D=$ "On input $\langle M, w\rangle$,
(1) Construct a new TM
$M^{\prime}=$ "On input x,
(1) If $x=0^{n} 1^{n}$ for some n, accept
(2) Otherwise, run M on w and if M accepts, accept; otherwise reject"
(2) Run R on $\left\langle M^{\prime}\right\rangle$ and if R accepts, then accept; otherwise reject"

Proof

Let's construct a TM whose language is $\{0,1\}^{*}$ if $w \in L(M)$ and is $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ if $w \notin L(M)$
Proof.
Assume that Regulartm is decided by some TM R. Build D to decide $A_{\text {TM }}$ $D=$ "On input $\langle M, w\rangle$,
(1) Construct a new TM
$M^{\prime}=$ "On input x,
(1) If $x=0^{n} 1^{n}$ for some n, accept
(2) Otherwise, run M on w and if M accepts, accept; otherwise reject"
(2) Run R on $\left\langle M^{\prime}\right\rangle$ and if R accepts, then accept; otherwise reject"

We need to show that D is a decider and we need to show that $L(D)=A_{\text {TM }}$
Why is D a decider?

Proof

Let's construct a TM whose language is $\{0,1\}^{*}$ if $w \in L(M)$ and is $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ if $w \notin L(M)$
Proof.
Assume that Regulartm is decided by some TM R. Build D to decide $A_{\text {TM }}$ $D=$ "On input $\langle M, w\rangle$,
(1) Construct a new TM
$M^{\prime}=$ "On input x,
(1) If $x=0^{n} 1^{n}$ for some n, accept
(2) Otherwise, run M on w and if M accepts, accept; otherwise reject"
(2) Run R on $\left\langle M^{\prime}\right\rangle$ and if R accepts, then accept; otherwise reject"

We need to show that D is a decider and we need to show that $L(D)=A_{\text {TM }}$
Why is D a decider? Note that we never run M^{\prime}. All D does is construct a new TM and then run a decider on its representation

Proof

Let's construct a TM whose language is $\{0,1\}^{*}$ if $w \in L(M)$ and is $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ if $w \notin L(M)$

Proof.

Assume that Regulartm is decided by some TM R. Build D to decide $A_{\text {TM }}$ $D=$ "On input $\langle M, w\rangle$,
(1) Construct a new TM
$M^{\prime}=$ "On input x,
(1) If $x=0^{n} 1^{n}$ for some n, accept
(2) Otherwise, run M on w and if M accepts, accept; otherwise reject"
(2) Run R on $\left\langle M^{\prime}\right\rangle$ and if R accepts, then accept; otherwise reject"

We need to show that D is a decider and we need to show that $L(D)=A_{\text {TM }}$
Why is D a decider? Note that we never run M^{\prime}. All D does is construct a new TM and then run a decider on its representation

If $w \in L(M)$, then $L\left(M^{\prime}\right)=\{0,1\}^{*}$ which is regular so R and D accept. If $w \notin L(M)$, then $L\left(M^{\prime}\right)$ is not regular so R and D reject. Thus $L(D)=A_{\text {TM }}$

$A L L_{\mathrm{CFG}}$ is undecidable

Theorem
$A L L_{C F G}=\left\{\langle G\rangle \mid G\right.$ is a CFG and $\left.L(G)=\Sigma^{*}\right\}$ is undecidable.
Proof idea.
We want to reduce from $A_{\text {TM }}$
Given a TM M and a string w, we want to construct a CFG G such that if $w \in L(M)$, then G fails to generate some string and if $w \notin L(M)$, then $L(G)=\Sigma^{*}$

The string that G should fail to generate is an accepting computation of M on w
Recall, a configuration C of a TM is a string $C=u q v$ where $u \in \Gamma^{*}$ is the tape to the left of the tape head, $q \in Q$ is the current state, and $v \in \Gamma^{*}$ is the nonblank portion of the tape below and to the right of the tape head

Proof idea continued

An accepting computation is a sequence of configurations $C_{1}, C_{2}, \ldots, C_{n}$ such that
(1) $C_{1}=q_{0} w$ is the initial configuration (where w is the input)
(2) C_{i} follows from C_{i-1} according to the TM's transition; i.e., C_{i} is the same as C_{i-1} except for the symbols right around the states
(3) $C_{n}=u q_{\text {accept }} v$ for some $u, v \in \Gamma^{*}$

We want to create a CFG G that generates all strings except for the string $h=\# C_{1} \# C_{2}^{\mathcal{R}} \# \cdots \# C_{n} \#$ where $C_{1}, C_{2}, \ldots, C_{n}$ is an accepting computation of M on w

For technical reasons, we need every other C_{i} to be reversed

$$
h=\# \underbrace{\rightarrow \rightarrow}_{C_{1}} \# \underbrace{\leftarrow}_{C_{2}^{\mathcal{R}}} \# \underbrace{\rightarrow \rightarrow}_{C_{3}} \# \underbrace{\leftarrow}_{C_{4}^{\mathcal{R}}} \# \cdots \# \underbrace{\rightarrow}_{C_{n}} \#
$$

If $w \notin L(M)$, then no such accepting computation exists and $L(G)=\Sigma^{*}$
If $w \in L(M)$, then $L(G)=\Sigma^{*} \backslash\{h\}$

Proof idea continued

Rather than construct a CFG directly, we can construct a PDA P and then convert it to a CFG G
P should nondeterministically (i.e., using ε-transitions) check that one of the three conditions does not hold:
(1) If C_{1} is not the initial configuration (which is hard coded into P), accept; otherwise reject
(2) If C_{2} does not follow from C_{i-1}, accept; otherwise reject
(3) If C_{n} is not an accepting configuration, accept; otherwise reject

Condition 1 is easy to check: this branch of the PDA just checks that the input does not start with $\# q_{0} w \#$

Condition 3 is likewise easy: this branch of the PDA just checks that the state that appears before the final \# is not $q_{\text {accept }}$

Proof idea continued

Condition 2 is the hard one. P will nondeterministically pick a configuration C_{i} to check if it follows from C_{i-1}
P will push C_{i-1} onto its stack (or $C_{i-1}^{\mathcal{R}}$, depending on i being odd or even)
Then P will match C_{i} (or $C_{i}^{\mathcal{R}}$) by popping the stack. The symbols around the states and the states themselves need to change according to M 's transition function (this is the slightly tricky part)

This branch rejects if C_{i} properly follows from C_{i-1} and accepts otherwise

Proof

Proof.

Assume $A L L_{\mathrm{CFG}}$ is decided by TM R and construct TM D to decide $A_{\text {TM }}$: $D=$ "On input $\langle M, w\rangle$,
(1) Construct PDA P based on M and w
(2) Convert P to an equivalent CFG G
(3) Run R on $\langle G\rangle$ and if R rejects, accept; otherwise reject"

None of constructing the PDA, converting to a CFG, and running a decider loop so D is a decider

If $w \in L(M)$, then P rejects the string corresponding to the accepting computation so $L(G) \neq \Sigma^{*}$. Therefore, R rejects and D accepts

If $w \notin L(M)$, then P accepts every string so $L(G)=\Sigma^{*}$ and R accepts and D rejects
Since $A_{\text {TM }}$ is undecidable and D decides it, our assumption must be wrong and $A L L_{\mathrm{CFG}}$ is undecidable

$E Q_{\mathrm{CFG}}$ is undecidable

Homework: Prove that $E Q_{\text {CFG }}$ is undecidable
Reduce from $A L L_{\text {CFG }}$

