CS 383
 Lecture 14 - Non-context-free languages

Stephen Checkoway

Fall 2023

Review of "pumpable" languages

Recall we call a language L pumpable with pumping length p if for all $w \in L$ with $|w| \geq p$, there exist strings $x, y, z \in \Sigma^{*}$ with $w=x y z$ such that
(1) for all $i \geq 0, x y^{i} z \in L$;
(2) $|y|>0$; and
(3) $|x y| \leq p$

Then we proved that regular languages are pumpable
This let us prove a language was not regular by showing it isn't pumpable

CF-pumpability

A language L is CF-pumpable with pumping length p if for all $w \in L$ with $|w| \geq p$, there exist strings $u, v, x, y, z \in \Sigma^{*}$ such that
(1) for all $i \geq 0, u v^{i} x y^{i} z \in L$;
(2) $|v y|>0$; and
(3) $|v x y| \leq p$

Rather than dividing the string into 3 pieces, we're dividing it into 5
Two of the pieces (v and y) are pumped together
Condition 2 tells us that at least one of v or y must not be ε

Example pumpable language

The language $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ is CF-pumpable with pumping length $p=3$

Example pumpable language

The language $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ is CF-pumpable with pumping length $p=3$
Every string in w of length at least 3 has the form $w=s c \# c s^{\mathcal{R}}$ for $c \in\{\mathrm{a}, \mathrm{b}\}$ and $s \in\{\mathrm{a}, \mathrm{b}\}^{*}$. Note $|w|=3+2|s| \geq 3$

Example pumpable language

The language $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ is CF-pumpable with pumping length $p=3$
Every string in w of length at least 3 has the form $w=s c \# c s^{\mathcal{R}}$ for $c \in\{\mathrm{a}, \mathrm{b}\}$ and $s \in\{\mathrm{a}, \mathrm{b}\}^{*}$. Note $|w|=3+2|s| \geq 3$

Let $u=s$
$v=c$
$x=$ \#
$y=c$
$z=s^{\mathcal{R}}$

Example pumpable language

The language $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ is CF-pumpable with pumping length $p=3$
Every string in w of length at least 3 has the form $w=s c \# c s^{\mathcal{R}}$ for $c \in\{\mathrm{a}, \mathrm{b}\}$ and $s \in\{\mathrm{a}, \mathrm{b}\}^{*}$. Note $|w|=3+2|s| \geq 3$

Let $u=s$
$v=c$
$x=$ \#
$y=c$
$z=s^{\mathcal{R}}$
(1) for any $i \geq 0, u v^{i} x y^{i} z=s c^{i} \# c^{i} s^{\mathcal{R}}=\left(s c^{i}\right) \#\left(s c^{i}\right)^{\mathcal{R}} \in L$

Example pumpable language

The language $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ is CF-pumpable with pumping length $p=3$
Every string in w of length at least 3 has the form $w=s c \# c s^{\mathcal{R}}$ for $c \in\{\mathrm{a}, \mathrm{b}\}$ and $s \in\{\mathrm{a}, \mathrm{b}\}^{*}$. Note $|w|=3+2|s| \geq 3$

Let $u=s$
$v=c$
$x=$ \#
$y=c$
$z=s^{\mathcal{R}}$
(1) for any $i \geq 0, u v^{i} x y^{i} z=s c^{i} \# c^{i} s^{\mathcal{R}}=\left(s c^{i}\right) \#\left(s c^{i}\right)^{\mathcal{R}} \in L$
(2) $|v y|=|c c|=2>0$

Example pumpable language

The language $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ is CF-pumpable with pumping length $p=3$
Every string in w of length at least 3 has the form $w=s c \# c s^{\mathcal{R}}$ for $c \in\{\mathrm{a}, \mathrm{b}\}$ and $s \in\{\mathrm{a}, \mathrm{b}\}^{*}$. Note $|w|=3+2|s| \geq 3$

Let $u=s$
$v=c$
$x=$ \#
$y=c$
$z=s^{\mathcal{R}}$
(1) for any $i \geq 0, u v^{i} x y^{i} z=s c^{i} \# c^{i} s^{\mathcal{R}}=\left(s c^{i}\right) \#\left(s c^{i}\right)^{\mathcal{R}} \in L$
(2) $|v y|=|c c|=2>0$
(3) $|v x y|=|c \# c|=3 \leq p$

Parse trees

CFG for $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}: \quad S \rightarrow \mathrm{a} S \mathrm{a}|\mathrm{b} S \mathrm{~b}| \#$
Consider a parse tree for $w=$ aab\#baa

$$
i=1 \text { : }
$$

$u=\mathrm{aa}, v=\mathrm{b}, x=\#, y=\mathrm{b}, z=\mathrm{a} \mathrm{a}$

- Pumping down replaces the yellow trapezoid with the violet trapezoid
- Pumping up replaces the violet trapezoid with the yellow trapezoid

Parse trees

CFG for $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}: \quad S \rightarrow \mathrm{a} S \mathrm{a}|\mathrm{b} S \mathrm{~b}| \#$
Consider a parse tree for $w=$ aab\#baa

$$
i=1: \quad i=0
$$

$u=\mathrm{aa}, v=\mathrm{b}, x=\#, y=\mathrm{b}, z=\mathrm{aa}$

- Pumping down replaces the yellow trapezoid with the violet trapezoid
- Pumping up replaces the violet trapezoid with the yellow trapezoid

Parse trees

CFG for $A=\left\{w \# w^{\mathcal{R}} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}: \quad S \rightarrow \mathrm{a} S \mathrm{a}|\mathrm{b} S \mathrm{~b}| \#$
Consider a parse tree for $w=$ aab\#baa

$$
i=1: \quad i=0: \quad i=2:
$$

$u=\mathrm{a} a, v=\mathrm{b}, x=\#, y=\mathrm{b}, z=\mathrm{a} \mathrm{a}$

- Pumping down replaces the yellow trapezoid with the violet trapezoid
- Pumping up replaces the violet trapezoid with the yellow trapezoid

CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable

CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable
Proof idea.
Consider a CFG $G=(V, \Sigma, R, S)$ in CNF

CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable
Proof idea.
Consider a CFG $G=(V, \Sigma, R, S)$ in CNF
Set p large enough that any string of length at least p repeats some variable in its derivation (it turns out $p=2^{|V|}+1$ works)

CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable
Proof idea.
Consider a CFG $G=(V, \Sigma, R, S)$ in CNF
Set p large enough that any string of length at least p repeats some variable in its derivation (it turns out $p=2^{|V|}+1$ works)

This repeated variable, call it R, will play the same role as the repeated state did in proving that regular languages are pumpable Note that this means $R \stackrel{*}{\Rightarrow} v x y$ and $R \stackrel{*}{\Rightarrow} x$

Condition 1: $\forall i \geq 0 . u v^{i} x y^{i} z \in L$

- Pumping down replaces the yellow triangle with the violet triangle
- Pumping up replaces the violet triangle with the yellow triangle
- We can pump up arbitrarily by repeating this process

Thus we've satisfied the first condition:
(1) for all $i \geq 0, u v^{i} x y^{i} z \in L$

Condition 2: $|v y|>0$

To see that at least one of v or y is not ε, let's look at $R \stackrel{*}{\Rightarrow} v R y$

Condition 2: $|v y|>0$

To see that at least one of v or y is not ε, let's look at $R \stackrel{*}{\Rightarrow} v R y$

Since G is in CNF, we must have $R \Rightarrow A B \stackrel{*}{\Rightarrow} v R y$ for some variables A and B

Two cases:

Condition 2: $|v y|>0$

To see that at least one of v or y is not ε, let's look at $R \stackrel{*}{\Rightarrow} v R y$

Since G is in CNF, we must have $R \Rightarrow A B \stackrel{*}{\Rightarrow} v R y$ for some variables A and B

Two cases:

- $A \stackrel{*}{\Rightarrow} v R s$ and $B \stackrel{*}{\Rightarrow} t$ where $s t=y$
 t (and thus y) cannot be ε because G is in CNF

Condition 2: $|v y|>0$

To see that at least one of v or y is not ε, let's look at $R \stackrel{*}{\Rightarrow} v R y$

Since G is in CNF, we must have $R \Rightarrow A B \stackrel{*}{\Rightarrow} v R y$ for some variables A and B

Two cases:

- $A \stackrel{*}{\Rightarrow} v R s$ and $B \stackrel{*}{\Rightarrow} t$ where $s t=y$
 t (and thus y) cannot be ε because G is in CNF
- $A \stackrel{*}{\Rightarrow} s$ and $B \stackrel{*}{\Rightarrow} t R y$ where $s t=v$
s (and thus v) cannot be ε because G is in CNF

Condition 2: $|v y|>0$

To see that at least one of v or y is not ε, let's look at $R \stackrel{*}{\Rightarrow} v R y$

Since G is in CNF, we must have $R \Rightarrow A B \stackrel{*}{\Rightarrow} v R y$ for some variables A and B

Two cases:

- $A \stackrel{*}{\Rightarrow} v R s$ and $B \stackrel{*}{\Rightarrow} t$ where $s t=y$
 t (and thus y) cannot be ε because G is in CNF
- $A \stackrel{*}{\Rightarrow} s$ and $B \stackrel{*}{\Rightarrow} t R y$ where $s t=v$
s (and thus v) cannot be ε because G is in CNF In either case, we've satisfied the second condition:
(2) $|v y|>0$

Condition 3: $|v x y| \leq p$

For strings with length at least $p=2^{|V|}+1$ we said there had to be a repeated variable

Condition 3: $|v x y| \leq p$

For strings with length at least $p=2^{|V|}+1$ we said there had to be a repeated variable

Looking at all parse trees of height at least $|V|+1$, there must be a repeated variable (pigeonhole principle), so pick one of those in the lowest $|V|+1$ for R that derives $v x y$

Condition 3: $|v x y| \leq p$

For strings with length at least $p=2^{|V|}+1$ we said there had to be a repeated variable

Looking at all parse trees of height at least $|V|+1$, there must be a repeated variable (pigeonhole principle), so pick one of those in the lowest $|V|+1$ for R that derives $v x y$

Now since R is at distance at most $|V|+1$ from the leaves,
 we must have $|v x y| \leq 2^{|V|} \leq p$
(A perfect binary tree of height h has 2^{h} leaves, but the last level of interior nodes in a parse tree for a grammar in CNF have a single child each)

Condition 3: $|v x y| \leq p$

For strings with length at least $p=2^{|V|}+1$ we said there had to be a repeated variable

Looking at all parse trees of height at least $|V|+1$, there must be a repeated variable (pigeonhole principle), so pick one of those in the lowest $|V|+1$ for R that derives $v x y$

Now since R is at distance at most $|V|+1$ from the leaves,
 we must have $|v x y| \leq 2^{|V|} \leq p$
(A perfect binary tree of height h has 2^{h} leaves, but the last level of interior nodes in a parse tree for a grammar in CNF have a single child each)

Therefore, we've satisfied the final condition:
(3) $|v x y| \leq p$

Showing that a language is not context-free

We can prove that a language is not context-free by showing that it violates the pumping lemma for context-free languages

Steps:
(1) Assume the language, L, is context-free with some unspecified pumping length p
(2) Pick string $w \in L$ such that $|w| \geq p$
(3) Consider every division of w into $u v x y z=w$ such that $|v y|>0$, and $|v x y| \leq p$
(4) For each possible division, show that for some $i, u v^{i} x y^{i} z \notin L$

Example

$B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$ is not context-free

Example

$B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$ is not context-free
First, assume B is context-free with pumping length p

Example

$B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$ is not context-free
First, assume B is context-free with pumping length p
Select $w=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{c}^{p}$ which is in B and has length $3 p \geq p$

Example

$B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$ is not context-free

First, assume B is context-free with pumping length p
Select $w=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{c}^{p}$ which is in B and has length $3 p \geq p$
Now consider all possible $u v x y z=w$ with $|v y|>0$ and $|v x y| \leq p$

Example

$B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$ is not context-free
First, assume B is context-free with pumping length p
Select $w=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{c}^{p}$ which is in B and has length $3 p \geq p$
Now consider all possible $u v x y z=w$ with $|v y|>0$ and $|v x y| \leq p$

- At least one of v or y contains two distinct symbols. Then $u v^{2} x y^{2} z$ contains symbols out of order so $u v^{2} x y^{2} z \notin B$

Example

$B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$ is not context-free
First, assume B is context-free with pumping length p
Select $w=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{c}^{p}$ which is in B and has length $3 p \geq p$
Now consider all possible $u v x y z=w$ with $|v y|>0$ and $|v x y| \leq p$

- At least one of v or y contains two distinct symbols. Then $u v^{2} x y^{2} z$ contains symbols out of order so $u v^{2} x y^{2} z \notin B$
- Both v and y contain the same symbol $\left(v=\mathrm{a}^{m}, y=\mathrm{a}^{n} ; v=\mathrm{b}^{m}, y=\mathrm{b}^{n}\right.$; or $v=\mathrm{c}^{m}, y=\mathrm{c}^{n}$). Then $u x z$ doesn't have the same number of as, bs , and cs , so $u v^{0} x y^{0} z \notin B$

Example

$B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$ is not context-free
First, assume B is context-free with pumping length p
Select $w=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{c}^{p}$ which is in B and has length $3 p \geq p$
Now consider all possible $u v x y z=w$ with $|v y|>0$ and $|v x y| \leq p$

- At least one of v or y contains two distinct symbols. Then $u v^{2} x y^{2} z$ contains symbols out of order so $u v^{2} x y^{2} z \notin B$
- Both v and y contain the same symbol $\left(v=\mathrm{a}^{m}, y=\mathrm{a}^{n} ; v=\mathrm{b}^{m}, y=\mathrm{b}^{n}\right.$; or $v=\mathrm{c}^{m}, y=\mathrm{c}^{n}$). Then $u x z$ doesn't have the same number of as, bs , and cs , so $u v^{0} x y^{0} z \notin B$
- v and y contain different symbols, but only a single type each $\left(v=\mathrm{a}^{m}, y=\mathrm{b}^{n}\right.$; $v=\mathrm{a}^{m}, y=\mathrm{c}^{n}$; or $v=\mathrm{b}^{m}, y=\mathrm{c}^{n}$). Again, $u x z$ doesn't have the same number of as, bs, and cs so $u v^{0} x y^{0} z \notin B$

Using closure properties

Using the pumping lemma for CFLs is a pain
We can prove that

$$
C=\left\{w \mid w \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*} \text { and } w \text { has the same number of as, } \mathrm{bs} \text {, and } \mathrm{cs}\right\}
$$

is not context-free by intersecting it with a regular language What language should we choose?

Using closure properties

Using the pumping lemma for CFLs is a pain
We can prove that

$$
C=\left\{w \mid w \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*} \text { and } w \text { has the same number of as, } \mathrm{bs} \text {, and } \mathrm{cs}\right\}
$$

is not context-free by intersecting it with a regular language
What language should we choose?
Intersect with $\mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{c}^{*}$:

$$
C \cap \underline{\mathrm{a}}^{*} \mathrm{~b}^{*} \mathrm{c}^{*}=B
$$

Using closure properties

Using the pumping lemma for CFLs is a pain
We can prove that

$$
C=\left\{w \mid w \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*} \text { and } w \text { has the same number of as, } \mathrm{bs} \text {, and } \mathrm{cs}\right\}
$$

is not context-free by intersecting it with a regular language
What language should we choose?
Intersect with $\mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{c}^{*}$:

$$
C \cap \underline{\mathrm{a}}^{*} \mathrm{~b}^{*} \mathrm{c}^{*}=B
$$

Since context-free languages are closed under intersection with a regular language, if C were context-free, then B would be context-free.

This is a contradiction so C is not context-free.

Another example
$D=\left\{\mathrm{a}^{n} \mathrm{ba}^{2 n} \mathrm{ba}^{3 n} \mid n \geq 0\right\}$ is not context-free

Another example

$D=\left\{\mathrm{a}^{n} \mathrm{ba}^{2 n} \mathrm{ba}^{3 n} \mid n \geq 0\right\}$ is not context-free
Pick $w=\mathrm{a}^{p} \mathrm{ba}^{2 p} \mathrm{ba}^{3 p}$ and consider $u v x y z=w$ such that $|v y|>0$ and $|v x y| \leq p$

Another example

$D=\left\{\mathrm{a}^{n} \mathrm{ba}^{2 n} \mathrm{ba}^{3 n} \mid n \geq 0\right\}$ is not context-free
Pick $w=\mathrm{a}^{p} \mathrm{ba}^{2 p} \mathrm{ba}^{3 p}$ and consider $u v x y z=w$ such that $|v y|>0$ and $|v x y| \leq p$

- If v or y contains b , then pumping down gives a string with too few bs

Another example

$D=\left\{\mathrm{a}^{n} \mathrm{ba}^{2 n} \mathrm{ba}^{3 n} \mid n \geq 0\right\}$ is not context-free
Pick $w=\mathrm{a}^{p} \mathrm{ba}^{2 p} \mathrm{ba}^{3 p}$ and consider $u v x y z=w$ such that $|v y|>0$ and $|v x y| \leq p$

- If v or y contains b , then pumping down gives a string with too few bs
- If x doesn't contain a b, then $v x y=\mathrm{a}^{m}$ is in the first, second, or third run of as, for some m. In any case, pumping down gives a string with as in the wrong ratio

Another example

$D=\left\{\mathrm{a}^{n} \mathrm{ba}^{2 n} \mathrm{ba}^{3 n} \mid n \geq 0\right\}$ is not context-free
Pick $w=\mathrm{a}^{p} \mathrm{ba}^{2 p} \mathrm{ba}^{3 p}$ and consider $u v x y z=w$ such that $|v y|>0$ and $|v x y| \leq p$

- If v or y contains b , then pumping down gives a string with too few bs
- If x doesn't contain a b, then $v x y=\mathrm{a}^{m}$ is in the first, second, or third run of as, for some m. In any case, pumping down gives a string with as in the wrong ratio
- If x contains a b , then either $v=\mathrm{a}^{m}$ is in the first run of as and $y=\mathrm{a}^{n}$ is in the second, or v is in the second and y is in the third. In either case, pumping down gives a string with as in the wrong ratio

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
These proofs are inelegant and painful to read/write

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases

These proofs are inelegant and painful to read/write

Try to use closure properties whenever possible!

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
These proofs are inelegant and painful to read/write

Try to use closure properties whenever possible!
If you cannot, here are some general hints

- Try to select w that will lead to as few cases as possible

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
These proofs are inelegant and painful to read/write

Try to use closure properties whenever possible!
If you cannot, here are some general hints

- Try to select w that will lead to as few cases as possible
- Use the fact that $|v x y| \leq p$ to constrain the cases; e.g., if you need some as followed by some bs followed by some cs, try to have at least p of each so that vxy cannot come from all three

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
These proofs are inelegant and painful to read/write

Try to use closure properties whenever possible!
If you cannot, here are some general hints

- Try to select w that will lead to as few cases as possible
- Use the fact that $|v x y| \leq p$ to constrain the cases; e.g., if you need some as followed by some bs followed by some cs, try to have at least p of each so that vxy cannot come from all three
- Try to cover as many similar cases at once as possible; e.g., if several cases are analogous, try to address them in one argument

Intersection of CFLs

We know that the intersection of a CFL and a regular language is context-free

Is the intersection of two CFLs necessarily context-free?

Intersection of CFLs

We know that the intersection of a CFL and a regular language is context-free

Is the intersection of two CFLs necessarily context-free?
No!

What are two context-free languages whose intersection is not context-free?

Intersection of CFLs

We know that the intersection of a CFL and a regular language is context-free
Is the intersection of two CFLs necessarily context-free?
No!

What are two context-free languages whose intersection is not context-free?

$$
\begin{aligned}
E & =\left\{\mathrm{a}^{m} \mathrm{~b}^{m} \mathrm{c}^{n} \mid m, n \geq 0\right\} \\
F & =\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mathrm{c}^{n} \mid m, n \geq 0\right\} \\
E \cap F & =\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}
\end{aligned}
$$

