CS 383
 Lecture 13 - Closure properties of context-free languages

Stephen Checkoway

Fall 2023

CFLs and PDAs

Theorem

Every context-free language can be recognized by some PDA.

Proof idea.
(1) Use the PDA's stack to perform a left-most derivation of a word in the language
(2) Match the PDA's input symbols against the stack, popping each one
(3) Accept if stack is empty when there's no more input

What we'd like to do

Consider the language $A=\left\{w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and w is not a palindrome $\}$ What CFG generates that language?

What we'd like to do

Consider the language $A=\left\{w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and w is not a palindrome $\}$ What CFG generates that language?

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{a}|\mathrm{~b} S \mathrm{~b}| \mathrm{a} T \mathrm{~b} \mid \mathrm{b} T \mathrm{a} \\
& T \rightarrow \mathrm{a} T|\mathrm{~b} T| \varepsilon
\end{aligned}
$$

What we'd like to do

Consider the language $A=\left\{w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and w is not a palindrome $\}$ What CFG generates that language?

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{a}|\mathrm{~b} S \mathrm{~b}| \mathrm{a} T \mathrm{~b} \mid \mathrm{b} T \mathrm{a} \\
& T \rightarrow \mathrm{a} T|\mathrm{~b} T| \varepsilon
\end{aligned}
$$

A left-most derivation of the string abaaa is

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \text { abaaa. }
$$

We want to start by pushing S on the stack, then performing the derivation step by step so that abaaa ends on the stack, and then match the input

What we'd like to do

Consider the language $A=\left\{w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and w is not a palindrome $\}$ What CFG generates that language?

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{a}|\mathrm{~b} S \mathrm{~b}| \mathrm{a} T \mathrm{~b} \mid \mathrm{b} T \mathrm{a} \\
& T \rightarrow \mathrm{a} T|\mathrm{~b} T| \varepsilon
\end{aligned}
$$

A left-most derivation of the string abaaa is

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \text { abaaa. }
$$

We want to start by pushing S on the stack, then performing the derivation step by step so that abaaa ends on the stack, and then match the input

There are two complications
(1) The first step in the derivation $S \Rightarrow \mathrm{a} S$ a requires popping one symbol and pushing three
(2) We can only replace symbols at the top of the stack

Pushing multiple symbols

We would like to write a transition like (q) $\stackrel{\varepsilon, S \rightarrow \mathrm{a} T \mathrm{~b}}{\longrightarrow}$ but $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P\left(Q \times \Gamma_{\varepsilon}\right)$ doesn't allow that

Pushing multiple symbols

We would like to write a transition like (q) $\stackrel{\varepsilon, S \rightarrow \mathrm{a} T \mathrm{~b}}{ }$ (r)
but $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P\left(Q \times \Gamma_{\varepsilon}\right)$ doesn't allow that
Instead, use multiple transitions q ($\xrightarrow{\varepsilon, S \rightarrow \mathrm{~b}}{ }^{\varepsilon, \varepsilon \rightarrow T} \xrightarrow{\varepsilon, \varepsilon \rightarrow \mathrm{a}}(r$
Note that the symbols are pushed on in reverse order

We can only replace symbols at the top of the stack

Rather than first deriving the whole string on the stack and then matching the input,

- If the top of the stack is a terminal, match it to the next input symbol
$t, t \rightarrow \varepsilon$
for each $t \in \Sigma$
- If the top of the stack is a variable, replace it with the RHS of a corresponding rule

We can only replace symbols at the top of the stack

Rather than first deriving the whole string on the stack and then matching the input,

- If the top of the stack is a terminal, match it to the next input symbol
$t, t \rightarrow \varepsilon$
for each $t \in \Sigma$
- If the top of the stack is a variable, replace it with the RHS of a corresponding rule

In fact, we only need four main states plus any additional states necessary to push multiple symbols

The $q_{\text {loop }}$ state is where all the real work happens

Example

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{a}|\mathrm{~b} S \mathrm{~b}| \mathrm{a} T \mathrm{~b} \mid \mathrm{b} T \mathrm{a} \\
& T \rightarrow \mathrm{a} T|\mathrm{~b} T| \varepsilon
\end{aligned}
$$

(1) For each $t \in \Sigma$, add the transition $t, t \rightarrow \varepsilon$ from $q_{\text {loop }}$ to $q_{\text {loop }}$
(2) For each rule $A \rightarrow u_{1} u_{2} \cdots u_{n}$ for $u_{i} \in V \cup \Sigma$, add $n-1$ new states (if $n>1$) and transitions to pop A and push $u_{1}, u_{2}, \ldots, u_{n}$ on in reverse order

[The rules on the right need 10 extra states to make this a proper PDA]

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push \$; \$

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push $\$$;
(2) push S;

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push \$; \$
(2) push S; $S \$$
(3) pop S, push a S a; aSa\$

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push \$; \$
(2) push S; $S \$$
(3) pop S, push a S a;
(4) read and pop a;

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push \$; \$
(2) push S; $S \$$
(3) pop S, push a S a;
aSa\$
(4) read and pop a;

5 pop S, push bTa; $S \mathrm{a} \$$
$\mathrm{~b} T \mathrm{aa} \$$

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push $\$$; \$
(2) push S; $S \$$
(3) pop S, push a S a; aSa\$
(4) read and pop a;

5 pop S, push bTa;
$S \mathrm{a} \$$
$\mathrm{~b} T \mathrm{aa} \$$
(6) read and pop b;

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push $\$$;
(2) push S;
(3) pop S, push a S a;
(4) read and pop a;

5 pop S, push bTa;
(6) read and pop b;
(7) pop T, push a T;

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push $\$$;
(2) push S; $S \$$
(3) pop S, push a S a; aSa\$
(4) read and pop a;

5 pop S, push bTa;
bTaa\$
(6) read and pop b;
$(7$ pop T, push a T;
Taa\$

8 read and pop a;
aTaa\$

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push $\$$;
(2) push S; $S \$$
(3) pop S, push a S a; aSa\$
(4) read and pop a;
(5) pop S, push bTa;
bTaa\$
(6) read and pop b;
$(7$ pop T, push a T;
8 read and pop a;
(0) pop T, push ε; aa\$

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push $\$$;
(2) push S; $S \$$
(3) pop S, push a S a; aSa\$
(4) read and pop a;
(5) pop S, push bTa;
bTaa\$
(6) read and pop b;
$(7$ pop T, push a T;
8 read and pop a;
(9) pop T, push ε; aa\$
10 read and pop a;

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push $\$$;
(2) push S; $S \$$
(3) pop S, push a S a;
(4) read and pop a;

5 pop S, push bTa;
(6) read and pop b;
$(7$ pop T, push a T;
8 read and pop a;
(9) pop T, push ε;
(10) read and pop a;
(1I) read and pop a;

Running the PDA on some input

Consider running the PDA on the input abaaa. The stack is shown on the right after each step
(1) push $\$$;
(2) push S; S\$
(3) pop S, push a S a;
(4) read and pop a;

5 pop S, push bTa;
aSa\$
(6) read and pop b;
$(7$ pop T, push a T;
8 read and pop a;
(9) pop T, push ε; aa\$
(10) read and pop a;
(1I) read and pop a;
(12) pop \$ and accept;

Proving that every CFL is recognized by a PDA

Proof.
Let A be a CFL generated by a CFG $G=(V, \Sigma, R, S)$.

Proving that every CFL is recognized by a PDA

Proof.
Let A be a CFL generated by a CFG $G=(V, \Sigma, R, S)$.
Construct the PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{a}\right\}\right)$ with states $Q=\left\{q_{0}, q_{1}, q_{\text {loop }}, q_{a}\right\} \cup E$ where E are the extra states we need for each rule and $\Gamma=V \cup \Sigma \cup\{\$\}$.

Proving that every CFL is recognized by a PDA

Proof.
Let A be a CFL generated by a CFG $G=(V, \Sigma, R, S)$.
Construct the PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{a}\right\}\right)$ with states $Q=\left\{q_{0}, q_{1}, q_{\text {loop }}, q_{a}\right\} \cup E$ where E are the extra states we need for each rule and $\Gamma=V \cup \Sigma \cup\{\$\}$.

Start with then transitions

$$
\begin{aligned}
& \varepsilon, \varepsilon \rightarrow \$ \text { from } q_{0} \text { to } q_{1}, \\
& \varepsilon, \varepsilon \rightarrow S \text { from } q_{1} \text { to } q_{\text {loop }}, \text { and } \\
& \varepsilon, \$ \rightarrow \varepsilon \text { from } q_{\text {loop }} \text { to } q_{a}
\end{aligned}
$$

Proving that every CFL is recognized by a PDA

Proof.
Let A be a CFL generated by a CFG $G=(V, \Sigma, R, S)$.
Construct the PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{a}\right\}\right)$ with states $Q=\left\{q_{0}, q_{1}, q_{\text {loop }}, q_{a}\right\} \cup E$ where E are the extra states we need for each rule and $\Gamma=V \cup \Sigma \cup\{\$\}$.

Start with then transitions

$$
\begin{aligned}
& \varepsilon, \varepsilon \rightarrow \$ \text { from } q_{0} \text { to } q_{1}, \\
& \varepsilon, \varepsilon \rightarrow S \text { from } q_{1} \text { to } q_{\text {loop }}, \text { and } \\
& \varepsilon, \$ \rightarrow \varepsilon \text { from } q_{\text {loop }} \text { to } q_{a}
\end{aligned}
$$

For each $t \in \Sigma$, add the transition $t, t \rightarrow \varepsilon$ from $q_{\text {loop }}$ to $q_{\text {loop }}$.

Proving that every CFL is recognized by a PDA

Proof.
Let A be a CFL generated by a CFG $G=(V, \Sigma, R, S)$.
Construct the PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{a}\right\}\right)$ with states $Q=\left\{q_{0}, q_{1}, q_{\text {loop }}, q_{a}\right\} \cup E$ where E are the extra states we need for each rule and $\Gamma=V \cup \Sigma \cup\{\$\}$.

Start with then transitions

$$
\begin{aligned}
& \varepsilon, \varepsilon \rightarrow \$ \text { from } q_{0} \text { to } q_{1} \\
& \varepsilon, \varepsilon \rightarrow S \text { from } q_{1} \text { to } q_{\text {loop }}, \text { and } \\
& \varepsilon, \$ \rightarrow \varepsilon \text { from } q_{\text {loop }} \text { to } q_{a}
\end{aligned}
$$

For each $t \in \Sigma$, add the transition $t, t \rightarrow \varepsilon$ from $q_{\text {loop }}$ to $q_{\text {loop }}$.
For each rule $A \rightarrow u$ add the states and transitions necessary to pop A and push u in reverse order from $q_{\text {loop }}$ to $q_{\text {loop }}$.

Proof continued

Consider running M on input $w=w_{1} w_{2} \cdots w_{n}$ for $w_{i} \in \Sigma$.
The first time M enters state $q_{\text {loop }}$, the stack is $S \$$ and no input has been read.
Every subsequent time it enters $q_{\text {loop }}$, the input read so far concatenated with the stack is a step in some left-most derivation of w (followed by a \$).
l.e., if k symbols have been read from the input and the stack is s, then $w_{1} w_{2} \cdots w_{k} s$ is a step in the derivation of w

Returning to the example

$S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow$ abaaa

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$

Returning to the example

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \mathrm{abaaa}
$$

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$

Returning to the example

$S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow$ abaaa

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$

Returning to the example

$S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow$ abaaa

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$

Returning to the example

$S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow$ abaaa

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push b $T \mathrm{a}$	a	$\mathrm{b} T \mathrm{aa} \$$

Returning to the example

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \mathrm{abaaa}
$$

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push b $T \mathrm{a}$	a	$\mathrm{b} T \mathrm{a} a \$$
$q_{\text {loop }}$	read and pop b	ab	$T \mathrm{aa} \$$

Returning to the example

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \text { abaaa }
$$

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push $\mathrm{b} T \mathrm{a}$	a	$\mathrm{b} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop b	ab	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push $\mathrm{a} T$	ab	$\mathrm{a} T \mathrm{aa} \$$

Returning to the example

$S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow$ abaaa

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push b $T \mathrm{a}$	a	$\mathrm{b} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop b	ab	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push a T	ab	$\mathrm{a} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop a	aba	$T \mathrm{aa} \$$

Returning to the example

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \text { abaaa }
$$

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push $\mathrm{b} T \mathrm{a}$	a	$\mathrm{b} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop b	ab	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push a T	ab	$\mathrm{a} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop a	aba	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push ε	aba	aa $\$$

Returning to the example

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \text { abaaa }
$$

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push bTa	a	$\mathrm{b} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop b	ab	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push a T	ab	$\mathrm{a} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop a	aba	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push ε	aba	aa $\$$
$q_{\text {loop }}$	read and pop a	abaa	$\mathrm{a} \$$

Returning to the example

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \text { abaaa }
$$

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push bTa	a	$\mathrm{b} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop b	ab	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push a T	ab	$\mathrm{a} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop a	aba	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push ε	aba	aa $\$$
$q_{\text {loop }}$	read and pop a	abaa	$\mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	abaaaa $\$ \$$	

Returning to the example

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \text { abaaa }
$$

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push bTa	a	$\mathrm{b} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop b	ab	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push a T	ab	$\mathrm{a} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop a	aba	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push ε	aba	aa $\$$
$q_{\text {loop }}$	read and pop a	abaaa	$\mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	abaaa	$\$$
$q_{\text {loop }}$	pop $\$$	abaaa	ε

Returning to the example

$$
S \Rightarrow \mathrm{a} S \mathrm{a} \Rightarrow \mathrm{ab} T \mathrm{aa} \Rightarrow \mathrm{aba} T \mathrm{aa} \Rightarrow \text { abaaa }
$$

State	Action	Input read	Stack
q_{0}	push $\$$	ε	$\$$
q_{1}	push S	ε	$S \$$
$q_{\text {loop }}$	pop S, push a $S \mathrm{a}$	ε	$\mathrm{a} S \mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	a	$S \mathrm{a} \$$
$q_{\text {loop }}$	pop S, push bTa	a	$\mathrm{b} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop b	ab	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push a T	ab	$\mathrm{a} T \mathrm{aa} \$$
$q_{\text {loop }}$	read and pop a	aba	$T \mathrm{aa} \$$
$q_{\text {loop }}$	pop T, push ε	aba	aa $\$$
$q_{\text {loop }}$	read and pop a	abaa	$\mathrm{a} \$$
$q_{\text {loop }}$	read and pop a	abaaa	$\$$
$q_{\text {loop }}$	pop $\$$	abaaa	ε
q_{a}	accept	abaaa	ε

Back from example

Consider running M on input $w=w_{1} w_{2} \cdots w_{n}$ for $w_{i} \in \Sigma$.

The first time M enters state $q_{\text {loop }}$, the stack is $S \$$ and no input has been read.
Every subsequent time it enters $q_{\text {loop }}$, the input read so far concatenated with the stack is a step in some left-most derivation of w (followed by a \$).
l.e., if k symbols have been read from the input and the stack is s, then $w_{1} w_{2} \cdots w_{k} s$ is a step in the derivation of w

Back from example

Consider running M on input $w=w_{1} w_{2} \cdots w_{n}$ for $w_{i} \in \Sigma$.
The first time M enters state $q_{\text {loop }}$, the stack is $S \$$ and no input has been read.
Every subsequent time it enters $q_{\text {loop }}$, the input read so far concatenated with the stack is a step in some left-most derivation of w (followed by a \$).
l.e., if k symbols have been read from the input and the stack is s, then $w_{1} w_{2} \cdots w_{k} s$ is a step in the derivation of w
M accepts w once the derivation is complete and all terminals have been matched. Therefore, each string accepted by M is in A.

Back from example

Consider running M on input $w=w_{1} w_{2} \cdots w_{n}$ for $w_{i} \in \Sigma$.
The first time M enters state $q_{\text {loop }}$, the stack is $S \$$ and no input has been read.
Every subsequent time it enters $q_{\text {loop }}$, the input read so far concatenated with the stack is a step in some left-most derivation of w (followed by a \$).
l.e., if k symbols have been read from the input and the stack is s, then $w_{1} w_{2} \cdots w_{k} s$ is a step in the derivation of w
M accepts w once the derivation is complete and all terminals have been matched. Therefore, each string accepted by M is in A.

For each $w \in A$, there is some left-most derivation of w by G. By construction, M performs the derivation on the stack while matching leading terminals.

Thus $L(M)=A$.

Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.
Proof idea.

Going the other direction

Theorem

If a language is recognized by a PDA, then it is context-free.
Proof idea.
(1) First, convert the PDA to one that

- has a single accepting state q_{a};
- empties its stack before accepting; and
- either pushes a symbol or pops a symbol, but not both, on each transition

Going the other direction

Theorem

If a language is recognized by a PDA, then it is context-free.
Proof idea.
(1) First, convert the PDA to one that

- has a single accepting state q_{a};
- empties its stack before accepting; and
- either pushes a symbol or pops a symbol, but not both, on each transition
(2) Next, construct a CFG that
- has variables that are pairs of states $\langle q, r\rangle$ from the PDA;
- has start variable $\left\langle q_{0}, q_{a}\right\rangle$;
- has rules $\langle q, q\rangle \rightarrow \varepsilon$ for each $q \in Q$;
- has rules $\langle p, r\rangle \rightarrow\langle p, q\rangle\langle q, r\rangle$ for each $p, q, r \in Q$; and
- has rules $\langle p, q\rangle \rightarrow a\langle r, s\rangle b$ for $p, q, r, s \in Q$ and $a, b \in \Sigma_{\varepsilon}$ if $(r, u) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, u)$

Going the other direction

Theorem

If a language is recognized by a PDA, then it is context-free.
Proof idea.
(1) First, convert the PDA to one that

- has a single accepting state q_{a};
- empties its stack before accepting; and
- either pushes a symbol or pops a symbol, but not both, on each transition
(2) Next, construct a CFG that
- has variables that are pairs of states $\langle q, r\rangle$ from the PDA;
- has start variable $\left\langle q_{0}, q_{a}\right\rangle$;
- has rules $\langle q, q\rangle \rightarrow \varepsilon$ for each $q \in Q$;
- has rules $\langle p, r\rangle \rightarrow\langle p, q\rangle\langle q, r\rangle$ for each $p, q, r \in Q$; and
- has rules $\langle p, q\rangle \rightarrow a\langle r, s\rangle b$ for $p, q, r, s \in Q$ and $a, b \in \Sigma_{\varepsilon}$ if $(r, u) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, u)$
(3) Prove (by induction) that each variable $\langle q, r\rangle$ has the property $\langle q, r\rangle \stackrel{*}{\Rightarrow} x \in \Sigma^{*}$ iff starting M in state q with an empty stack and running on input x causes M to move to state r and end with an empty stack

Going the other direction

Theorem

If a language is recognized by a PDA, then it is context-free.
Proof idea.
(1) First, convert the PDA to one that

- has a single accepting state q_{a};
- empties its stack before accepting; and
- either pushes a symbol or pops a symbol, but not both, on each transition
(2) Next, construct a CFG that
- has variables that are pairs of states $\langle q, r\rangle$ from the PDA;
- has start variable $\left\langle q_{0}, q_{a}\right\rangle$;
- has rules $\langle q, q\rangle \rightarrow \varepsilon$ for each $q \in Q$;
- has rules $\langle p, r\rangle \rightarrow\langle p, q\rangle\langle q, r\rangle$ for each $p, q, r \in Q$; and
- has rules $\langle p, q\rangle \rightarrow a\langle r, s\rangle b$ for $p, q, r, s \in Q$ and $a, b \in \Sigma_{\varepsilon}$ if $(r, u) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, u)$
(3) Prove (by induction) that each variable $\langle q, r\rangle$ has the property $\langle q, r\rangle \stackrel{*}{\Rightarrow} x \in \Sigma^{*}$ iff starting M in state q with an empty stack and running on input x causes M to move to state r and end with an empty stack
(4) Conclude that $\left\langle q_{0}, q_{a}\right\rangle \stackrel{*}{\Rightarrow} w$ iff $w \in L(M)$

Closure properties of CFLs

The class of context-free languages is closed under

- Union
- Concatenation
- Kleene star
- Prefix
- Suffix
- Reversal
- Intersection with a regular language
- Quotient by a string
- Quotient by a regular language

We proved closure under union, concatenation, Kleene star, and Prefix previously

Reversal

Theorem
Context-free languages are closed under reversal.
Proof. Let B be a context-free language generated by a CFG $G=(V, \Sigma, R, S)$.
Construct CFG $G^{\prime}=\left(V, \Sigma, R^{\prime}, S\right)$ where $R^{\prime}=\left\{A \rightarrow u^{\mathcal{R}} \mid A \rightarrow u\right.$ is a rule in $\left.R\right\}$.

Reversal

Theorem

Context-free languages are closed under reversal.
Proof. Let B be a context-free language generated by a CFG $G=(V, \Sigma, R, S)$.
Construct CFG $G^{\prime}=\left(V, \Sigma, R^{\prime}, S\right)$ where

$$
R^{\prime}=\left\{A \rightarrow u^{\mathcal{R}} \mid A \rightarrow u \text { is a rule in } R\right\} .
$$

To prove that $L\left(G^{\prime}\right)=B^{\mathcal{R}}$, we want to show that for each variable $A \in V$ and $u \in(V \cup \Sigma)^{*}, A \stackrel{*}{\Rightarrow}_{G} u$ in n steps iff $A \stackrel{*}{\Rightarrow}_{G^{\prime}} u^{\mathcal{R}}$ in n steps.

Let's write $\stackrel{k}{\Rightarrow}$ to mean $\stackrel{*}{\Rightarrow}$ in exactly k steps.

Proof continued

Base case $n=0$. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u=u^{\mathcal{R}}=A$ so $A \stackrel{0}{\Rightarrow}_{G^{\prime}} u^{\mathcal{R}}$, and vice versa.

Proof continued

Base case $n=0$. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u=u^{\mathcal{R}}=A$ so $A \xlongequal{\Rightarrow} G^{\prime} u^{\mathcal{R}}$, and vice versa.
Inductive step. Assume that for all $n>0, A \in V$, and $u \in(V \cup \Sigma)^{*}, A \stackrel{n-1}{\Rightarrow}_{G} u$ iff $A \stackrel{n-1}{\Rightarrow} G^{\prime} u^{\mathcal{R}}$.

Proof continued

Base case $n=0$. If $A \stackrel{0}{\Rightarrow}{ }_{G} u$, then $u=u^{\mathcal{R}}=A$ so $A \stackrel{0}{\Rightarrow}{ }_{G} u^{\mathcal{R}}$, and vice versa.
Inductive step. Assume that for all $n>0, A \in V$, and $u \in(V \cup \Sigma)^{*}, A \stackrel{n-1}{\Rightarrow}_{G} u$ iff $A \stackrel{n-1}{\Rightarrow} G^{\prime} u^{\mathcal{R}}$.

If $A \stackrel{n}{\Rightarrow}_{G} u$, then there is some $C \in V$ and $x, y, z \in(V \cup \Sigma)^{*}$ such that $u=x y z$, $A \stackrel{n-1}{\Rightarrow}{ }_{G} x C z$, and $C \Rightarrow \Rightarrow_{G} y$.

Proof continued

Base case $n=0$. If $A \stackrel{0}{\Rightarrow}{ }_{G} u$, then $u=u^{\mathcal{R}}=A$ so $A \stackrel{0}{\Rightarrow} G^{t} u$, and vice versa.
Inductive step. Assume that for all $n>0, A \in V$, and $u \in(V \cup \Sigma)^{*}, A \stackrel{n-1}{\Rightarrow}{ }_{G} u$ iff $A \stackrel{n-1}{\Rightarrow} G^{\prime} u^{\mathcal{R}}$.

If $A \stackrel{n}{\Rightarrow}_{G} u$, then there is some $C \in V$ and $x, y, z \in(V \cup \Sigma)^{*}$ such that $u=x y z$, $A \stackrel{n-1}{\Rightarrow}{ }_{G} x C z$, and $C \Rightarrow \Rightarrow_{G} y$.

By the inductive hypothesis $A \stackrel{n-1}{\Rightarrow}{ }_{G^{\prime}} z^{\mathcal{R}} C x^{\mathcal{R}}$ and by construction $C \Rightarrow{ }_{G^{\prime}} y^{\mathcal{R}}$. Thus $A \xlongequal{n}{ }_{G^{\prime}} z^{\mathcal{R}} y^{\mathcal{R}} x^{\mathcal{R}}=(x y z)^{\mathcal{R}}=u^{\mathcal{R}}$. Swapping G and G^{\prime} shows the converse.

Proof continued

Base case $n=0$. If $A \stackrel{0}{\Rightarrow}_{G} u$, then $u=u^{\mathcal{R}}=A$ so $A \stackrel{0}{\Rightarrow}{ }_{G} u^{\mathcal{R}}$, and vice versa.
Inductive step. Assume that for all $n>0, A \in V$, and $u \in(V \cup \Sigma)^{*}, A \stackrel{n-1}{\Rightarrow}{ }_{G} u$ iff $A \stackrel{n-1}{\Rightarrow} G^{\prime} u^{\mathcal{R}}$.

If $A \stackrel{n}{\Rightarrow}{ }_{G} u$, then there is some $C \in V$ and $x, y, z \in(V \cup \Sigma)^{*}$ such that $u=x y z$, $A \stackrel{n-1}{\Rightarrow}{ }_{G} x C z$, and $C \Rightarrow \Rightarrow_{G} y$.

By the inductive hypothesis $A \stackrel{n-1}{\Rightarrow}{ }_{G^{\prime}} z^{\mathcal{R}} C x^{\mathcal{R}}$ and by construction $C \Rightarrow{ }_{G^{\prime}} y^{\mathcal{R}}$. Thus $A \xlongequal{n}{ }_{G^{\prime}} z^{\mathcal{R}} y^{\mathcal{R}} x^{\mathcal{R}}=(x y z)^{\mathcal{R}}=u^{\mathcal{R}}$. Swapping G and G^{\prime} shows the converse.

Thus, $A \stackrel{n}{\Rightarrow}_{G} u$ iff $A \xlongequal{\Rightarrow}{ }_{G^{\prime}} u^{\mathcal{R}}$.

Proof continued

Base case $n=0$. If $A \stackrel{0}{\Rightarrow}{ }_{G} u$, then $u=u^{\mathcal{R}}=A$ so $A \stackrel{0}{\Rightarrow}_{G^{\prime}} u^{\mathcal{R}}$, and vice versa.
Inductive step. Assume that for all $n>0, A \in V$, and $u \in(V \cup \Sigma)^{*}, A \stackrel{n-1}{\Rightarrow}{ }_{G} u$ iff $A \stackrel{n-1}{\Rightarrow} G^{\prime} u^{\mathcal{R}}$.

If $A \stackrel{n}{\Rightarrow}_{G} u$, then there is some $C \in V$ and $x, y, z \in(V \cup \Sigma)^{*}$ such that $u=x y z$, $A \stackrel{n-1}{\Rightarrow}{ }_{G} x C z$, and $C \Rightarrow \Rightarrow_{G} y$.

By the inductive hypothesis $A \stackrel{n-1}{\Rightarrow}{ }_{G^{\prime}} z^{\mathcal{R}} C x^{\mathcal{R}}$ and by construction $C \Rightarrow{ }_{G^{\prime}} y^{\mathcal{R}}$. Thus $A \xlongequal{n}{ }_{G^{\prime}} z^{\mathcal{R}} y^{\mathcal{R}} x^{\mathcal{R}}=(x y z)^{\mathcal{R}}=u^{\mathcal{R}}$. Swapping G and G^{\prime} shows the converse.

Thus, $A \stackrel{n}{\Rightarrow}_{G} u$ iff $A \stackrel{n}{\Rightarrow}{ }_{G^{\prime}} u^{\mathcal{R}}$.
Therefore, for $w \in B, S \stackrel{*}{\Rightarrow}_{G} w$ iff $S \stackrel{*}{\Rightarrow} G^{\prime} w^{\mathcal{R}}$ so $L\left(G^{\prime}\right)=B^{\mathcal{R}}$.

Suffix

Theorem
Context free languages are closed under Suffix.
Proof.
Since $\operatorname{Suffix}(A)=\operatorname{Prefix}\left(A^{\mathcal{R}}\right)^{\mathcal{R}}$ and CFLs are closed under reversal and Prefix, CFLs are closed under Suffix.

Intersection of a CFL and a regular language
Theorem
The intersection of a CFL and a regular language is context-free.
Proof.
Let A be a CFL recognized by the PDA $M_{1}=\left(Q_{1}, \Sigma, \Gamma, \delta_{1}, q_{1}, F_{1}\right)$ and B be a regular language recognized by the NFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.

Intersection of a CFL and a regular language

Theorem
The intersection of a CFL and a regular language is context-free.
Proof.
Let A be a CFL recognized by the PDA $M_{1}=\left(Q_{1}, \Sigma, \Gamma, \delta_{1}, q_{1}, F_{1}\right)$ and B be a regular language recognized by the NFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.

Construct the PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where

$$
\begin{aligned}
Q & =Q_{1} \times Q_{2} \\
q_{0} & =\left(q_{1}, q_{2}\right) \\
F & =F_{1} \times F_{2} \\
\delta((q, r), a, b) & =\left\{((s, t), c) \mid(s, c) \in \delta_{1}(q, a, b) \text { and } t \in \delta_{2}(r, a)\right\} \quad \text { for } a \in \Sigma_{\varepsilon}, b, c \in \Gamma_{\varepsilon}
\end{aligned}
$$

Intersection of a CFL and a regular language

Theorem

The intersection of a CFL and a regular language is context-free.
Proof.
Let A be a CFL recognized by the PDA $M_{1}=\left(Q_{1}, \Sigma, \Gamma, \delta_{1}, q_{1}, F_{1}\right)$ and B be a regular language recognized by the NFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.

Construct the PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where

$$
\begin{aligned}
Q & =Q_{1} \times Q_{2} \\
q_{0} & =\left(q_{1}, q_{2}\right) \\
F & =F_{1} \times F_{2} \\
\delta((q, r), a, b) & =\left\{((s, t), c) \mid(s, c) \in \delta_{1}(q, a, b) \text { and } t \in \delta_{2}(r, a)\right\} \quad \text { for } a \in \Sigma_{\varepsilon}, b, c \in \Gamma_{\varepsilon}
\end{aligned}
$$

As M runs on input w, its stack and the first element of its state change according to δ_{1} whereas the second element of its state changes according to δ_{2}.
M accepts w iff M_{1} accepts w and M_{2} accepts w. Therefore, $L(M)=A \cap B$.

What about intersection with another CFL?

Are context-free languages closed under intersection?

What about intersection with another CFL?

Are context-free languages closed under intersection?
Consider $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and

$$
\begin{aligned}
& A=\left\{\mathrm{a}^{m} \mathrm{~b}^{m} \mathrm{c}^{n} \mid m, n \geq 0\right\} \\
& B=\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mathrm{c}^{n} \mid m, n \geq 0\right\}
\end{aligned}
$$

Both B and C are context-free. Is

$$
A \cap B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\} ?
$$

How can we keep track of how many as and bs we've seen to ensure we get the same number of cs using a PDA?

How about trying to generate such strings with a CFG?

What about intersection with another CFL?

Are context-free languages closed under intersection?
Consider $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and

$$
\begin{aligned}
& A=\left\{\mathrm{a}^{m} \mathrm{~b}^{m} \mathrm{c}^{n} \mid m, n \geq 0\right\} \\
& B=\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mathrm{c}^{n} \mid m, n \geq 0\right\}
\end{aligned}
$$

Both B and C are context-free. Is

$$
A \cap B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\} ?
$$

How can we keep track of how many as and bs we've seen to ensure we get the same number of cs using a PDA?

How about trying to generate such strings with a CFG?
Next time, we'll see that $B \cap C$ is not context-free!

