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Review from last time

Alphabet Finite, nonempty set of symbols

String Finite-length sequence of symbols from an alphabet

Language Set of strings over an alphabet

Can be empty Can be infinite

Alphabet $ $

String " $

Language " "

If Σ is an alphabet, then Σ
∗

is the language consisting of all strings over Σ
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State machines

A state machine is a way to structure computation

It consists of

• a fixed set of states

• a fixed initial state

• a specification of what action to take in response to input for each state

• a current “active” state
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State machine example: An automatic swinging door

The door has a front and a back sensor

We want to open the door when the front
sensor is triggered, as long as it doesn’t hit
someone (i.e., as long as the back sensor is
not triggered)

We want to close the door when the front
sensor is not triggered, as long as it doesn’t
hit someone
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State machine example: An automatic swinging door

The door can be either OPEN or CLOSED

Possible inputs to the state machine:

FRONT Someone is standing on the front sensor

REAR Someone is standing on the rear sensor

BOTH Someone is standing on both sensors

NEITHER No one is standing on either sensor

CLOSED OPEN

REAR, BOTH, NEITHER

FRONT

FRONT, REAR, BOTH

NEITHER
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State machine example: An automatic swinging door

1 Initially the door is CLOSED

CLOSED OPEN

REAR, BOTH, NEITHER

FRONT

FRONT, REAR, BOTH

NEITHER

6 / 30



State machine example: An automatic swinging door

1 Initially the door is CLOSED

2 Alice stands on the FRONT sensor and the door changes to OPEN

CLOSED OPEN

REAR, BOTH, NEITHER

FRONT

FRONT, REAR, BOTH

NEITHER

6 / 30



State machine example: An automatic swinging door

1 Initially the door is CLOSED

2 Alice stands on the FRONT sensor and the door changes to OPEN

3 Alice enters as Bob approaches the door so BOTH sensors are triggered and the
door stays OPEN

CLOSED OPEN

REAR, BOTH, NEITHER

FRONT

FRONT, REAR, BOTH

NEITHER

6 / 30



State machine example: An automatic swinging door

1 Initially the door is CLOSED

2 Alice stands on the FRONT sensor and the door changes to OPEN

3 Alice enters as Bob approaches the door so BOTH sensors are triggered and the
door stays OPEN

4 Alice moves away as Bob enters so only the REAR sensor is triggered and the
door stays OPEN

CLOSED OPEN

REAR, BOTH, NEITHER

FRONT

FRONT, REAR, BOTH

NEITHER

6 / 30



State machine example: An automatic swinging door

1 Initially the door is CLOSED

2 Alice stands on the FRONT sensor and the door changes to OPEN

3 Alice enters as Bob approaches the door so BOTH sensors are triggered and the
door stays OPEN

4 Alice moves away as Bob enters so only the REAR sensor is triggered and the
door stays OPEN

5 Bob moves away so NEITHER sensor is triggered and the door changes to
CLOSED

CLOSED OPEN

REAR, BOTH, NEITHER

FRONT

FRONT, REAR, BOTH

NEITHER
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State machine example: TCP
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State machine example: TLS 1.3

START <----+

Send ClientHello | | Recv HelloRetryRequest

[K_send = early data] | |

v |

/ WAIT_SH ----+

| | Recv ServerHello

| | K_recv = handshake

Can | V

send | WAIT_EE

early | | Recv EncryptedExtensions

data | +--------+--------+

| Using | | Using certificate

| PSK | v

| | WAIT_CERT_CR

| | Recv | | Recv CertificateRequest

| | Certificate | v

| | | WAIT_CERT

| | | | Recv Certificate

| | v v

| | WAIT_CV

| | | Recv CertificateVerify

| +> WAIT_FINISHED <+

| | Recv Finished

\ | [Send EndOfEarlyData]

| K_send = handshake

| [Send Certificate [+ CertificateVerify]]

Can send | Send Finished

app data --> | K_send = K_recv = application

after here v

CONNECTED
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State machine example: Video games

Input is received from the controller

What does the game do with the input? Depends on what state it’s in

• During normal game play: perform an action (jump, run, start a conversation)

• During a cut scene: nothing or maybe end the cut scene

• During a loading screen: nothing

• . . .
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Deterministic finite Automaton (DFA)

DFAs are the simplest model of computation:
Given an input string, the DFA will either accept it or reject it

They are state machines

• The (finite set of) states are the DFA’s memory

• It starts in a fixed start state

• It processes its input one symbol at a time; for each symbol, it will transition to a
new state (or stay in the current state)

• At the end of the input, the state it is in determines if the input is accepted or
rejected
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DFA notation

The states of a DFA are represented as a circle
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DFA notation

The states of a DFA are represented as a circle

We will usually give the states short names like q0 or q1

q1

The initial state is represented with an arrow and is frequently named q0

q0

Transitions between states are given by directed edges, labeled by an alphabet symbol
and every state must have exactly one transition for each symbol in the alphabet
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DFA notation

The states of a DFA are represented as a circle

We will usually give the states short names like q0 or q1

q1

The initial state is represented with an arrow and is frequently named q0

q0

Transitions between states are given by directed edges, labeled by an alphabet symbol
and every state must have exactly one transition for each symbol in the alphabet

q1 q2

a, b
b

a

Accepting states are drawn with two circles

q3
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DFA example

q0 q1 q2

a

b

a

b

a

b

States Q = {q0, q1, q2}

Alphabet Σ = {a, b}

Transitions δ a b

q0 q0 q1

q1 q0 q2

q2 q0 q2

Start state q0

Accepting states F = {q2}
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DFA example

q0 q1 q2

a

b

a

b

a

b

• ababb
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DFA example
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a

b

a

b

• ababb "Accepted

• bbab $Rejected

14 / 30
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DFA example

q0 q1 q2

a

b

a

b

a

b

• ababb "Accepted

• bbab $Rejected

• ε $Rejected

What strings does this DFA accept?
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DFA example

q0 q1 q2

a

b

a

b

a

b

• ababb "Accepted

• bbab $Rejected

• ε $Rejected

What strings does this DFA accept?
Strings that end in bb

We can write this as a set: {wbb ∣ w ∈ Σ
∗
}
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Formalizing DFAs

A DFA M is a 5-tuple M = (Q, Σ, δ, q0, F ) where
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Formalizing DFAs

A DFA M is a 5-tuple M = (Q, Σ, δ, q0, F ) where

• Q is a finite set of states

• Σ is an alphabet (finite set of symbols)

• δ ∶ Q × Σ → Q is the transition function

• q0 ∈ Q is the start state

• F ⊆ Q is the set of accepting (or final) states
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DFA example once again

q0 q1 q2

a

b

a

b

a

b

States Q = {q0, q1, q2}

Alphabet Σ = {a, b}

Transitions δ a b

q0 q0 q1

q1 q0 q2

q2 q0 q2

Start state q0

Accepting states F = {q2}

If we call this DFA M , then
M = (Q, Σ, δ, q0, F ) is a complete,
mathematical description of the DFA

The diagram is just helpful for humans; it
doesn’t contain any information not
contained in in the 5 components of M
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DFA acceptance and rejection

A DFA M = (Q, Σ, δ, q0, F ) accepts a string w ∈ Σ
∗

if starting from the start state q0

and moving from state to state according to the transition function δ on input w, the
machine ends in one of the accepting states

If M does not accept w, then it rejects w
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Language of a DFA

The language of a DFA M—written L(M)—is the set of strings that M accepts

L(M) = {w ∈ Σ
∗

∣ M accepts w}

We say that M recognizes a set A to mean L(M) = A
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DFA construction

Let’s build a DFA to recognize the language
A = {w ∣ w contains exactly one or three 0} with the alphabet Σ = {0, 1}

If we were writing a Python program to check if a string w has one or three 0s, it
might look like this

count = 0

for c in w:

if c == '0':

count += 1

if count == 1 or count == 3:

print(" ACCEPT ")

else:

print(" REJECT ")
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DFA construction

Let’s build a DFA to recognize the language
A = {w ∣ w contains exactly one or three 0} with the alphabet Σ = {0, 1}

If we were writing a Python program to check if a string w has one or three 0s, it
might look like this

count = 0

for c in w:

if c == '0':

count += 1

if count == 1 or count == 3:

print(" ACCEPT ")

else:

print(" REJECT ")

states and initial state

transition function

accept states
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DFA construction

Let’s build a DFA to recognize the language
A = {w ∣ w contains exactly one or three 0} with the alphabet Σ = {0, 1}

Approach:

1 We need states to keep track of how many 0s the DFA has seen so far;
How many states should the DFA have?

22 / 30



DFA construction

Let’s build a DFA to recognize the language
A = {w ∣ w contains exactly one or three 0} with the alphabet Σ = {0, 1}

Approach:

1 We need states to keep track of how many 0s the DFA has seen so far;
We need five states: corresponding to 0, 1, 2, 3, and ≥ 4 ’0’ symbols

q0 q1 q2 q3 q≥4

22 / 30



DFA construction

Let’s build a DFA to recognize the language
A = {w ∣ w contains exactly one or three 0} with the alphabet Σ = {0, 1}

Approach:

1 We need states to keep track of how many 0s the DFA has seen so far;
We need five states: corresponding to 0, 1, 2, 3, and ≥ 4 ’0’ symbols

2 How should the DFA move from state to state?

q0 q1 q2 q3 q≥4

22 / 30



DFA construction
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We need five states: corresponding to 0, 1, 2, 3, and ≥ 4 ’0’ symbols

2 On a 1, we should remain in the current state and on a 0, we should move to the
next state (or stay in the ≥ 4 state)
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1

0
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DFA construction

Let’s build a DFA to recognize the language
A = {w ∣ w contains exactly one or three 0} with the alphabet Σ = {0, 1}

Approach:

1 We need states to keep track of how many 0s the DFA has seen so far;
We need five states: corresponding to 0, 1, 2, 3, and ≥ 4 ’0’ symbols

2 On a 1, we should remain in the current state and on a 0, we should move to the
next state (or stay in the ≥ 4 state)

3 The states corresponding to 1 and 3 should be accepting states

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1
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Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0
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Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

23 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101

24 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101

24 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101

24 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101

24 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101

24 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1
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Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1
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25 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101 $Rejected

• 000

25 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101 $Rejected

• 000

25 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101 $Rejected

• 000 "Accepted

25 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101 $Rejected

• 000 "Accepted

• 00000

26 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101 $Rejected

• 000 "Accepted

• 00000

26 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101 $Rejected

• 000 "Accepted

• 00000

26 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101 $Rejected

• 000 "Accepted

• 00000

26 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1

• 0 "Accepted

• 10101 $Rejected

• 000 "Accepted

• 00000

26 / 30



Running our DFA

q0 q1 q2 q3 q≥4

0

1

0

1

0

1

0

1 0,1
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Formalizing DFA computation

Let M = (Q, Σ, δ, q0, F ) be a DFA and let w = w1w2⋯wn be a string where wi ∈ Σ

M accepts w if there exist states r0, r1, . . . , rn ∈ Q such that
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Formalizing DFA computation

Let M = (Q, Σ, δ, q0, F ) be a DFA and let w = w1w2⋯wn be a string where wi ∈ Σ

M accepts w if there exist states r0, r1, . . . , rn ∈ Q such that

1 r0 = q0

[The DFA starts in the start state]

2 ri = δ(ri−1, wi) for i ∈ {1, 2, . . . , n}

[The DFA moves from state to state according to δ]

3 rn ∈ F

[The DFA ends in an accepting state]

The sequence of n + 1 states r0, r1, . . . , rn are the states that the DFA moves through
on input w
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Examples

q0 q1 q2 q3 q≥4
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1

0

1

0

1

0

1 0,1

Input States r0, r1, . . . , rn Accepted/Rejected

ε q0

0

10101

000

00000
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Input States r0, r1, . . . , rn Accepted/Rejected

ε q0 $Rejected

0 q0, q1 "Accepted
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Regular languages

A language is regular if some DFA recognizes it

Recall: A DFA M recognizes a language A if A = {w ∣ M accepts w} = L(M)
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Prove some languages are regular

Let’s construct some DFAs with JFLAP for the following languages over Σ = {a, b}

• A = {w ∣ w starts and ends with a}

• B = {awa ∣ w ∈ Σ
∗
}

• C = {w ∣ w starts and ends with different symbols}

• D = Σ
∗

• E = ∅

• F = {w ∣∣w∣ is not a multiple of 4}

30 / 30


	Review
	State machines
	DFAs
	Formalism
	Regular languages

