
CS 383
Exam 2 Study Guide

Stephen Checkoway

Fall 2023

1 / 22



Exam topics
Broadly speaking: Everything through non-context-free languages (Sipser chapter 2)
• CFGs, both the mathematical definition as a 4-tuple G = (V, Σ, R, S) and as lists

of rules
• Converting a CFG to CNF
• PDAs, both the mathematical definition M = (Q, Σ, Γ, δ, q0, F ) and diagrams
• Closure properties of CFLs

2 / 22



Types of exam questions
The questions from the exam fall into these types
• True/false questions with explanation
• Constructions: Construct a CFG or PDA for a language
• Proofs: Proofs about operations on languages

3 / 22



Exam question break down
• Five true/false questions (4 points each)
• Two constructions (20 points each)
• Two proofs (20 points each)

No pumping lemma for context-free languages questions for this exam (but possibly on
the final)

4 / 22



Function from symbols to strings
The text of this slide is from a problem on the exam

Let Σ and Γ be alphabets and let f ∶ Σ → Γ∗ be a function that maps a symbol from
Σ to a string in Γ∗. (For example, if Σ = {a, b, c} and Γ = {1, 2}, then we might have
f(a) = 21, and f(b) = ε, and f(c) = 1.)

Extend f to operate on strings in Σ∗ by f(ε) = ε and f(x1⋯xn) = f(x1)⋯f(xn).
That is, to apply f to a string w = x1x2⋯xn where each xi ∈ Σ, apply f to each of
the symbols individually and concatenate the result. (Continuing the example above,
f(abca) = f(a)f(b)f(c)f(a) = 21ε121 = 21121.)

5 / 22



Fun fact about regular languages
If A is a regular language over the alphabet Σ and f ∶ Σ → Γ∗ is a function extended
to strings as described in the previous slide (i.e., f(ε) = ε and f(xy) = f(x)f(y)),
then B = {f(w) ∣ w ∈ A} is regular.

How would we prove that? Two approaches
• Start with a DFA for A and construct an NFA for B

• Start with a regex for A and construct a regex for B

In both cases, you’re going to need to use f(t) for t ∈ Σ

6 / 22



Question 1
Every NFA can be converted to an equivalent PDA

True. Do not use the stack.

7 / 22



Question 1
Every NFA can be converted to an equivalent PDA
True. Do not use the stack.

7 / 22



Question 2
Every PDA can be converted to an equivalent NFA

False. Nonregular, context-free languages cannot be recognized by an NFA but can by
a PDA.

8 / 22



Question 2
Every PDA can be converted to an equivalent NFA
False. Nonregular, context-free languages cannot be recognized by an NFA but can by
a PDA.

8 / 22



Question 3
Every CFG can be converted to an equivalent PDA

True. We have an explicit construction.

9 / 22



Question 3
Every CFG can be converted to an equivalent PDA
True. We have an explicit construction.

9 / 22



Question 4
Every PDA can be converted to an equivalent CFG

True. Proof is in the book.

10 / 22



Question 4
Every PDA can be converted to an equivalent CFG
True. Proof is in the book.

10 / 22



Question 5
Which of the following statements is always true about a PDA’s input alphabet Σ and
stack alphabet Γ?

1 Σ = Γ
2 Σ ≠ Γ
3 Σ ⊆ Γ
4 Σ ⊊ Γ (Σ ⊆ Γ but Σ ≠ Γ)
5 Γ ⊆ Σ
6 Γ ⊊ Σ
7 Γ always contains a symbol that’s not in Σ (e.g., $)
8 There’s no inherent relationship between Σ and Γ

No inherent relationship between them.

11 / 22



Question 5
Which of the following statements is always true about a PDA’s input alphabet Σ and
stack alphabet Γ?

1 Σ = Γ
2 Σ ≠ Γ
3 Σ ⊆ Γ
4 Σ ⊊ Γ (Σ ⊆ Γ but Σ ≠ Γ)
5 Γ ⊆ Σ
6 Γ ⊊ Σ
7 Γ always contains a symbol that’s not in Σ (e.g., $)
8 There’s no inherent relationship between Σ and Γ

No inherent relationship between them.

11 / 22



Question 6
Are context-free languages are always infinite

No. ∅ is a context-free language generated by the (silly) CFG S → S which derives no
strings.

12 / 22



Question 6
Are context-free languages are always infinite
No. ∅ is a context-free language generated by the (silly) CFG S → S which derives no
strings.

12 / 22



Question 7
Are Noncontext-free languages always infinite?

Yes. Finite languages are regular and regular languages are context-free

13 / 22



Question 7
Are Noncontext-free languages always infinite?
Yes. Finite languages are regular and regular languages are context-free

13 / 22



Question 8
Can a PDA’s stack alphabet be infinite? (I.e., can it contain infinitely many symbols?)

No. Alphabets are always finite.

14 / 22



Question 8
Can a PDA’s stack alphabet be infinite? (I.e., can it contain infinitely many symbols?)
No. Alphabets are always finite.

14 / 22



Question 9
If A is context-free and B is regular, then is A ∩ B regular?

It might be, but need not be, for example if A is not regular and B is Σ∗, then
A ∩ B = A.

15 / 22



Question 9
If A is context-free and B is regular, then is A ∩ B regular?
It might be, but need not be, for example if A is not regular and B is Σ∗, then
A ∩ B = A.

15 / 22



Question 10
If A is regular, and B is context-free, then is A ∪ B context-free?

Yes. Regular languages are closed under complement so A is regular and thus
context-free. Context-free languages are closed under union so the result is
context-free.

16 / 22



Question 10
If A is regular, and B is context-free, then is A ∪ B context-free?
Yes. Regular languages are closed under complement so A is regular and thus
context-free. Context-free languages are closed under union so the result is
context-free.

16 / 22



Question 11
If A is context-free and B is regular, then is A ∪ B context-free?

It might not be as context-free languages are not closed under complement.

17 / 22



Question 11
If A is context-free and B is regular, then is A ∪ B context-free?
It might not be as context-free languages are not closed under complement.

17 / 22



Question 12
What does it mean for a CFG to be ambiguous?

Some string in the language generated by the grammar has (a) at least two left-most
derivations; (b) at least two right-most derivations; and (c) at least two parse trees

18 / 22



Question 12
What does it mean for a CFG to be ambiguous?
Some string in the language generated by the grammar has (a) at least two left-most
derivations; (b) at least two right-most derivations; and (c) at least two parse trees

18 / 22



Question 13
What does it mean for a CFG to be unambiguous?

Every string in the language generated by the grammar has (a) exactly one left-most
derivation; (b) exactly one right-most derivation; and (c) exactly one parse tree

19 / 22



Question 13
What does it mean for a CFG to be unambiguous?
Every string in the language generated by the grammar has (a) exactly one left-most
derivation; (b) exactly one right-most derivation; and (c) exactly one parse tree

19 / 22



Question 14
If G is a CFG and w ∈ L(G) has two different derivations, is G ambiguous?

Not necessarily. If the two different derivations are both left-most or both right-most,
then yes. Otherwise, there’s not enough information to know.

20 / 22



Question 14
If G is a CFG and w ∈ L(G) has two different derivations, is G ambiguous?
Not necessarily. If the two different derivations are both left-most or both right-most,
then yes. Otherwise, there’s not enough information to know.

20 / 22



Example constructions
1 Give a CFG that generates the language

A = {w ∣ w ∈ {a, b}∗ contains at least 3 as}
2 Give a CFG that generates the language B = {ambn ∣ n > 2m}
3 Give a PDA that recognizes the language

C = {w ∣ w ∈ {a, b}∗ has odd length and the middle symbol is b}
4 Give a PDA that recognizes language B

5 Convert the CFG for language B to a PDA using the CFG to PDA construction
6 Convert the CFG for language B to CNF

21 / 22



Example proofs
1 Define a multi-push PDA (mPDA) as a PDA that can push 0 or more symbols on

the stack in each move. Formally, the transition function is
δ ∶ Q × Σε × Γε → P (Q × Γ∗). Prove that the class of languages recognized by
an mPDA is the class of context-free languages. (Show how to simulate an
mPDA using a normal PDA which uses additional states for each transition that
pushes more than one symbol.)

22 / 22


