Homework 7

Instructions

For each of the following problems, construct a PDA in JFLAP that recognizes the given language. Each PDA should be in its own file. The name of each file should be the problem number with the .jff extension: 1.jff, 2.jff, and so on.

Upload your solutions to GradeScope by dragging all of the .jff files onto the website. (If you wish to upload just a single file, for example, 1.jff, you'll also need to upload some other file such as a blank text file. This is a limitation of GradeScope.)

If you want to test if the stack is empty, you should start by pushing a $\$$ on the stack and checking for it later. You should not rely on the Z that JFLAP includes on the stack.

Problem 1 [10 points] $A=\left\{w \mid\right.$ every prefix of $w \in\{\mathrm{a}, \mathrm{b}\}^{*}$ has at least as many as as bs$\}$. [Hint: As the PDA reads its input, think about the number of as minus the number of b s. What does it mean if this number is positive, negative, or zero?]

Problem 2 [10 points] $B=\left\{x \mathrm{c}^{n} \mid n \geqslant 0\right.$ and $x \in\{\mathrm{a}, \mathrm{b}\}^{*}$ has n as or $\left.n \mathrm{bs}\right\}$ Here, the alphabet is $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ but x is composed only of as and bs. [Hint: Think about how the PDA will decide if it's counting as or b s.]

Problem 3 [10 points] $C=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{m} \mathrm{~d}^{n} \mid i, j, m, n \geqslant 0\right.$ and $\left.i+j=m+n\right\}$. Use the stack alphabet $\Gamma=\{\mathrm{x}, \$\}$.

Problem 4 [10 points] Convert the following CFG to a PDA using the construction described in class and in the book. [Hint: Your PDA should use 10 states.]

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{~b}|\mathrm{~b} T| T \mathrm{a} \\
& T \rightarrow \mathrm{~b} T|\mathrm{a} T| \varepsilon
\end{aligned}
$$

