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Branches
Visualize a project’s development as initially a linked list of commits


When a development track splits, a new branch is created

‣ This gives us a tree of commits


In Git, a branch is actually just a pointer to a leaf in the tree of development


Two or more branches can be merged together

‣ This gives a graph of commits
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Using branches
Development and release versions


Trying out new features


Focusing on fixing a bug


Simpler to do in Git than other VCS, consider using more frequently
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Git branching
List all branches in the project

‣ git branch 


Create a new branch

‣ git branch <branchname> 


Switch to a branch

‣ git checkout <branchname> 


Create and immediately switch

‣ git checkout –b <branchname> 


Delete a branch

‣ git branch –d <branchname> 
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Using branches
Create and switch to a branch
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$ git branch working

$ git checkout working
M README
Switched to branch 'working'

$ git branch
  main
* working



Stashing
Working tree should be clean when switching branches


Save/hide changes you're not ready to commit with git stash

‣ Pushes changes onto a stash stack


Recover changes later with git stash pop
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Using branches

7

main

working



Using branches
Integrate changes back into main
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$ git checkout main
Switched to branch ‘main'

$ git merge working
Merge made by the 'recursive' strategy.
 newfile.txt | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 newfile.txt



Before git merge
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main

working



After git merge
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main

working



Merged history
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*   cdd07b2 - (HEAD, main) Merge branch 
'working'
|\  
| * 1ccf9e7 - (working) Added a new file
* | 3637a76 - Second change
* | cf98d00 - First change 
|/  
* cf31a23 - Updated README to 2.0
* 2a8fc15 - Initial commit



Rebasing
Like merging, rebasing transfers changes from one branch to another


Does not create a new commit


Replays changes from current branch onto head of other branch
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Before git rebase
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main

working



After git rebase
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main

working



git rebase
Powerful tool


Can change the commit order


Merge/split commits


Make fixes in earlier commits

‣ DO NOT DO ON PUSHED CHANGES OR PUBLIC BRANCHES

15

$ git rebase –i main



Conflicts
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Git conflict markers

17

$ cat foo.c
<<<<<<< HEAD
current content
=======
branch content
>>>>>>> newbranch
$ vim foo.c
$ git add foo.c
$ git rebase --continue



Pull requests with Github
Contributing changes to repositories on Github


Requests the owner of the code integrate your changes
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You want to contribute code to the Github project fancy/project (fancy 
is the name of the owner, project is the name of the repo). You fork the 
repo (producing student/project), commit your changes, and push to 
student/project. Next, you make a pull request for fancy/project.


Which statement is true?

A. Your code is now integrated into fancy/project via merging


B. Your code is now integrated into fancy/project via rebasing


C. You have requested that your code be integrated into fancy/project, 
but no changes have been made


D. You cannot make any additional commits until the pull request has been 
accepted
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origin upstream

local

main main

main

Branches
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origin upstream

local

main main

main

$ git checkout -b feature

feature
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origin upstream

local

main main

main

$ git commit

feature

40



origin upstream

local

main main

main

$ git push -u origin feature

feature

feature
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origin upstream
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main main

main
feature
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origin upstream

local

main main

main

Great idea, now can you do it more like this?

feature

feature
pull request
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origin upstream

local

main main

main

$ git commit
$ git push

feature

feature

pull request
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origin upstream

local

main
main

main

Awesome, but please update with new changes in main

feature

feature

pull request

45



origin upstream

local

main
main

main

$ git remote add upstream https://github.com/…
$ git fetch upstream main:main

feature

feature

pull request
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origin upstream

local

main
main

main

$ git rebase main

feature

feature

pull request

WARNING: 
You may have 

to resolve conflicts.
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origin upstream

local

main
main

main

$ git rebase main

feature

feature

pull request
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origin upstream

local

main

main

$ git push -f origin main feature

feature

pull request

main

feature
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origin upstream

local

main

main

feature

pull request

main

feature

Great. Please squash your commits.
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origin upstream

local
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main

$ git rebase –i main

feature

pull request

main
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origin upstream

local
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$ git rebase –i main

feature

pull request
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origin upstream

local

main

main

$ git push -f origin feature

feature

pull request

main
feature
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origin upstream

local

main

main
feature

pull request

main
feature

Perfect, I accept!
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origin upstream

local

main

main

Time to Clean Up

feature

main
feature
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origin upstream

local

main

main

I accept!

feature

main
feature

$ git fetch upstream main:main
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origin upstream

local

main

main

I accept!

feature

main feature

$ git push origin main
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origin upstream

local

main

main

I accept!

main feature

$ git checkout main  
$ git branch -d feature
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origin upstream

local

main

main

I accept!

main

$ git push origin -d feature
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After a PR is accepted, Github will ask you if you want to delete your feature 
branch. If you say yes, which branches get deleted?

A. feature — the branch named feature in your local repo


B. origin/feature — the branch named feature in your remote repo


C. upstream/feature — the branch named feature in their remote repo


D. feature and origin/feature


E. feature, origin/feature, and upstream/feature
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Now that origin/feature has been deleted, how do you delete 
feature?

A. $ git delete feature


B. $ git delete -b feature


C. $ git branch -d feature


D. $ git push origin -d feature


E. I would google "delete a git branch" and then click on https://
stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-
locally-and-remotely like every other programmer

61

https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely
https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely
https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely

