
CS 241: Systems Programming
Lecture 19. System Calls II

Spring 2024

Prof. Stephen Checkoway

1

Creating a new process
Two schools of thought

‣ Windows way: single system call

• CreateProcess("calc.exe", /* other params */)

‣ Unix way: two (or more) system calls

• Create a copy of the currently running process: fork()

• Transform the copy into a new process: 
execve("/usr/bin/bc", args, env)

2

Process IDs
Every Unix process has a unique identifier

‣ Integer, used to index into a kernel process table

‣ $ ps ax # Print a list of all running processes and their PIDs

pid_t getpid(void);
std::process::id() -> u32;

Every process has a parent process

‣ processes are "reparented" to the init process if their parent already

exited

pid_t getppid(void);  
std::os::unix::process::parent_id() -> u32;

3

Running another program
int execve(char const *path, char *const argv[],  
 char *const envp[]);
‣ Last element of argv[] and envp[] must be 0 (NULL)
‣ If successful, execve won't return, instead, the OS will remove all of

the process's code and data and load the program from path in its
place and start running that

‣ The PID of the process doesn't change

‣ The open file descriptors remain open (unless marked close on exec)

‣ Returns -1 and sets errno on error

4

#include <err.h>
#include <stdlib.h>
#include <unistd.h>

void run_with_args(char const *program) {
 char *args[] = {
 (char *)program, // argv[0]
 "This is one argument", // argv[1]
 "two", // argv[2]
 "three", // argv[3]
 0, // argv[4] is NULL, end of args
 };
 char *env[] = { 0 }; // Empty environment.
 execve(program, args, env);
 err(EXIT_FAILURE, "%s", args[0]);
}

int main(int argc, char *argv[]) {
 run_with_args(argc == 1 ? "/bin/echo" : argv[1]);
} 5

exec(3) family
int execl(const char *path, const char *arg0, ...,
 (char *)0);
int execle(const char *path, const char *arg0, ...,
 (char *)0, char *const envp[]);
int execlp(const char *program, const char *arg0, ...,
 (char *)0);
int execv(const char *path, char *const argv[]);
int execvp(const char *program, char *const argv[]);
‣ execl, execle, execlp take 0-terminated variable number of arguments

‣ The argv and envp arrays must be 0-terminated

‣ execlp and execvp search PATH for the program

‣ glibc has an execvpe which is like execve but searches the PATH

6

Which of the following statements about execve() is false?

A. If execve() is successful, the new program replaces the calling program.

B. The file descriptors that were open before execve() are open in the new
program (except for those marked as close on exec).

C. If execve() has an error, it returns -1 and sets errno.

D. If execve() is successful, it returns 0.

7

Creating a new process
#include <unistd.h>  
#include <sys/types.h>

pid_t fork(void);

Creates an (almost) identical copy of the running program with one big
exception

‣ Returns 0 to the child but PID of child to the parent

‣ -1 on error and sets errno

This includes a copy of memory, code, file descriptors and most other bit of
process state (but not all)

8

fn whoami(s: &str) {
 let pid = std::process::id();
 let ppid = std::os::unix::process::parent_id();
 println!("{s:<8} pid={pid:<8} ppid={ppid}");
}

fn main() -> io::Result<()> {
 whoami("Prefork:");
 let pid = unsafe { libc::fork() };
 if pid < 0 {
 return Err(io::Error::last_os_error());
 }
 if pid == 0 {
 whoami("Child:");
 } else {
 whoami("Parent:");
 }
 Ok(())
}

9

Prefork: pid=88361 ppid=86581
Parent: pid=88361 ppid=86581
Child: pid=88362 ppid=88361

fork/exec
Usually used together

fork to create a duplicate process

exec (one of the exec family that is) to run a new program

fork and exec both preserve file descriptors

‣ This is how bash operates: it forks, sets file descriptors, and execs

10

After a fork, you have two copies of a program, the parent and the child,
and...

A. Either the parent or the child must call exec() immediately

B. The parent gets a PID and the child gets a 0 as return values from fork

C. The child gets a PID and the parent gets a 0 as return values from fork

D. Both parent and child get PIDs as the return values from fork

E. Both parent and child must call exec to proceed

11

Process exit status
Can wait for a child process to exit (or be stopped, e.g., by a debugger)

#include <sys/wait.h>

int status;  
pid_t pid = wait(&status);

Suspends execution until child exits, returns the PID of the child

12

Checking exit status
Use macros to examine exit status

WIFEXITED(status)

‣ True if the process exited normally

WEXITSTATUS(status)

‣ Returns actual return/exit value if WIFEXITED(status) is true

WIFSIGNALED(status)

‣ True if the process was terminated by a signal (e.g., SIGINT from ctrl-C)

WTERMSIG(status)

‣ Returns the signal that terminated the process if WIFSIGNALED(status)

13

Creating a new process, the Rust way
use std::os::unix::process::ExitStatusExt;
use std::process::Command;

fn main() -> io::Result<()> {
 let mut child = Command::new("/bin/ls")
 .args(["-l", "/etc/hosts"])
 .spawn()?;

 println!("Spawned process with id {}", child.id());
 let status = child.wait()?;
 if let Some(code) = status.code() {
 println!("Process exited with code {code}");
 } else if let Some(sig) = status.signal() {
 println!("Process exited with signal {sig}");
 }
 Ok(())
}

14

Command uses the
“builder pattern” to

configure which
process to spawn.

.spawn() returns a Result<Child>

“Builder” pattern in Rust
Create a builder object which will (eventually) construct the actual object

‣ Most methods take &mut self and return a &mut Self (they return self)

‣ One method will return the actual object you want

This lets you chain together method calls

 let mut child = Command::new("/bin/ls")
 .args(["-l", "/etc/hosts"])
 .spawn()?;
is equivalent to

 let mut cmd = Command::new(“/bin/ls");
 cmd.args(["-l", "/etc/hosts"]);
 let mut child = cmd.spawn()?;

15

Another builder example
The open system call takes a bunch of different options (look at the man
page for open(2))

The basic File::open() and File::create() handle the two most common cases:
opening a file for reading and creating a file to write

std::fs::OpenOptions is another builder pattern

‣ You call methods to configure reading, writing, appending, truncating,

etc.

‣ Then you call .open() to actually perform the open system call and

return a new File object

16

OpenOptions example
To open a file for reading and writing, creating the file if it doesn’t exist, use

let file = OpenOptions::new()
 .read(true)
 .write(true)
 .create(true)
 .open("foo.txt")?;

OpenOptions::new() returns an OpenOptions

.read(), .write(), .create() all return self

.open() returns an io::Result<File>

17

strace(1)
strace is a Linux program that prints out the system calls a program uses

‣ -e trace=open,openat,close,read,write will trace those system calls

‣ -f will trace children too

‣ -s size will show up to size bytes of strings

$ strace -e trace=open,openat,close,read,write cat Makefile  
...  
openat(AT_FDCWD, "Makefile", O_RDONLY) = 3  
read(3, "CC := clang\nCFLAGS := -Wall -std"..., 1048576) = 176  
write(1, "CC := clang\nCFLAGS := -Wall -std"..., 176) = 176  
read(3, "", 1048576) = 0  
close(3) = 0  
...

18

