CS 241: Systems Programming
Lecture 14. Structures

Spring 2024
Prof. Stephen Checkoway

struct

struct Course {
department: String,
number: 132,
section: 132,
instructor: String,

}

fn main() <
let ¢cs241 = Course {

department: String:

number: 241,
section: 1,

instructor: String:

Stack

main
Course f
department

cs241 number 241

section 1
instructor

» from('"CSCI"),

: from("Stephen Checkoway"),

Heap

CSCI
Stephen

Che...

Accessing members

struct Course {
department: String,
number: 132,
section: 132,
instructor: String,

}

fn main() {
let cs241 = Course {
department: String::from("CSCI"),
number: 241,
section: 1,
instructor: String::from("Stephen Checkoway"),
Fs
orintln! ("{} {}", cs24l.department, cs241.number);

Modifying a member

Stack Heap
struct Course { main

| Computer Sc...
depa rtment: String, Course S t e i hen Che
numbe.r: 132; department i o
section: 132,

. . number 241
instructor: String, cs24l M :
} section 1

instructor
fn main() <
let mut cs241 = Course {

department: String::from("CSCI"),
number: 241,

section: 1,
instructor: String::from("Stephen Checkoway"),

b

cs241.department = String::from("Computer Science");

}

Old department String was dropped (and its contents deallocated)

Field init shorthand

fn new _course(department: &str, number: 1i32) —-> Course {
Course {
department: department.to string(),
number, // <— No need to write number: number
section: 1,
instructor: String::from("Staff"),

}

fn main() {
let ¢s241 = new course("CSCI", 241);
println!("{} {}", cs241.department, cs241.number);

You’re designing a program for interacting with social media and you want to
represent posts using a Post structure you’re designing. Each Post needs an
account name, contents, and a number of “likes.” The account name and
contents never change, but the number of likes can. Which structure
definition best models this?

// A // C

struct Post { struct Post {
account: String, String account;
contents: String, String contents;

likes: ub64, ucd likes;
I3 I3

// B // D

struct Post { struct Post {
account: String, account: readonly String,
contents: String, contents: readonly String,
likes: mut u64, likes: ub4,

Update syntax

fn main() {
let ¢s241 = new course("CSCI", 241);
let cs241 2 = Course {
instructor: String::from("Stephen Checkoway"),
section: 2,
. . CS241
s
s

Moves all of the remaining fields from cs241 into cs241_2 and drops cs241

Tuple structs

struct Point(i32, i32);
fn main() {

let p = Point(4, 5);
println!("{} {}", p.0, p.1);

Create an new instance by giving the name and field values

Refer to fields using .0, .1, .2, etc., just like tuples

Printing structs

We cannot print an instance of a struct with printin!("{cs241}")
error[E0277]: Course doesn't implement std::fmt::Display

Display is a trait (like an interface in Java) that we can implement for our
own types

For arrays and Vecs and Results, we printed the debug representation with
printin!("{cs241:7?}")

error[E0277]: Course doesn't implement Debug

Deriving Debug

We can ask Rustc to produce an implementation of the Debug trait for us

#[derive(Debug)]
struct Course { .. }

fn main() {
let cs241 = new course("CSCI", 241);
println!("{cs241:7}");
println!("{cs241:#7?}");

s

Output:
Course { department: "CSCI", number: 241, section: 1, instructor: "Staff" }

Course {
department: "CSCI",
number: 241,
section: 1,
instructor: "Staff",

10

Making copies via clone

The Clone trait has a .clone() method that makes a deep copy of objects
fn main() {
let arr = vec![1, 2, 3, 4, 5];

let arr2 = arr.clone();
let arr3 = arr;
; Stack Heap
main 12345
Most types implement Clone > 12345
arr2

arr3

11

Deriving Clone

#[derive(Debug, Clone)]
struct Course {

department: String,
number: 132,
section: 132,
instructor: String,

h

All of the members’ types must implement Clone in order to derive Clone

12

Methods

Methods are functions defined for a type that take an instance of the type as

the first argument
> Similar to methods in object-oriented languages like Java and Python

The first parameter is always named se LT and it is explicit (unlike Java and
C++’s implicit th1is parameter)

We’ve used a bunch of examples of methods already including
» . len() for slices
> .push () for Strings and Vecs
> .push_str() for Strings
> .chars() to get an iterator over characters in a String
» .1ter() to get an iterator over a collection (like a Vec)

13

Three types of methods

There are three types of methods which are distinguished by the self
parameter
» fn foo(&self) {} self is a shared reference to the instance
» fn foo(&mut self) {} selfis a mutable reference to the instance
» fn foo(self) {} foo takes ownership of the instance

14

Methods taking shared refs

impl Course {
fn name(&self) —> String {
format! ("{} {}", self.department, self.number)
}

fn full_name(&self) —> String {
format! ("{} {}-{}", self.department, self.number, self.section)
+

}

fn main() {
let cs241 = new course("CSCI", 241);
println! ("{}", cs241.name());

15

Methods taking mutable refs

impl Course {
fn set instructor(&mut self, instructor: &str) {
self.instructor = instructor.to _string();
}

¥

fn main() {
let mut cs241 = new course("CSCI", 241):
cs241.set_instructor('"Stephen Checkoway");
println!("{}", cs241.instructor);

16

Methods taking ownership

Two main use cases
> The type can be copied (like 132, usize, bool)
> The method is returning some lower-level implementation

132 (and other integer types) have a bunch of methods that take self
» fn abs(self) —> 132
» fn pow(self, exp: u32) —> 132

Many types have . into_foo() methods that return implementation details
» String has fn into _bytes(self) —-> Vec<u8>

17

Getters and setters are methods for getting or setting the value of a field.
Imagine we have the following struct with getters and setters for the url field.
Which of the three possible self parameters should we use for the url() and

set_url() methods?

struct Foo {
url: String,
}

impl Foo {
fn url(SELF) —> &str { &self.url }
fn set url(SELF, url: String) { self.url = url; }

set_url()
&se LT &mut self
self mut self
self &self
&mut self &mut self
&se LT &se LT

Method calls are syntactic sugar

cs241.set_instructor("Stephen Checkoway");
printin!("{}", cs241.name);

IS the same as

Course::set_instructor(&mut cs241, "Stephen Checkoway");
println! ("{}", Course::name(&cs241));

19

Assoclated functions

Functions defined inside 1mp L blocks are called associated functions
Methods are one type of associated functions

We can also have associated functions that don’t take an instance as an
argument

> These are typically constructor functions

» Most types have a new() associated function that returns a new
iInstance of the type

Inside the 1mp L block we can refer to the type as Self

20

Constructor

impl Course {
fn new(department: &str, number: i32) —> Self {
Self {
department: department.to _string(),
number,
section: 1,
instructor: String::from("Staff"),

h

fn main() {
let ¢s241 = Course::new("CSCI", 241);
println! ("{}", cs24l.name());

21

Examples from the standard library

> String::new() — Creates a new, empty String

> Vec::new() — Creates a new, empty Vec

> Vec::with_capacity(100) — Creates a new, empty Vec with capacity 100
» HashMap::new() — Creates a new, empty HashMap

> BufReader::new(inner) = — Creates a new BufReader around some

underlying type that implements the Read trait

22

