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Memory safety
Data in programs are stored in memory (RAM)


One reasonable way to think about RAM is as a giant array of bytes


All of the data (and the program code!) is stored somewhere in that array


When you create an i64 variable, 8 bytes of memory are allocated 
somewhere in the array for that variable


When you create a String, some bytes of memory hold the contents of the 
string, some bytes of memory hold a pointer to the contents, some other 
bytes hold the length of the string
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Memory safety
It’s critical that it’s not possible to confuse which bytes are which


E.g., if our program can become confused about whether some memory is 
an i64 or is a pointer to our string contents, anything could happen!

‣ E.g., changing the i64 could cause the pointer to change and point at 

something that’s not a string or some region of memory that isn’t 
allocated at all


Memory safety is all about ensuring that it’s impossible for these sorts of 
errors to occur
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Memory safety and Rust
Rust ensures that program are memory safe, e.g.,

‣ It’s impossible to confuse a pointer with an integer

‣ It’s impossible to access out-of-bounds data in an array/Vec


Most modern languages (Python, Java, Go, Haskell, Ruby, etc.) are memory-
safe


Most systems languages (C and C++) are not!

‣ Memory safety errors are common and lead to real harm
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Ownership
Rust ensures memory safety through a concept of ownership


These are rules that the rust compiler enforces to prevent undefined 
behavior
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Stack frames
Variables live in a region of memory called the stack 


The stack is organized into frames 

Local variables in functions live in a stack frame


Each function that is called pushes a new frame onto the stack


Each function that returns pops its stack frame off the stack
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Every variable gets its own slot
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fn foo() { 
    // What does the stack look 
    // like in this function… 
} 

fn bar() { 
    foo(); 
} 

fn main() { 
    foo(); 
    bar(); 
    foo(); // …when called here? 
} 

A. main


B. foo


C. main 
foo


D. main 
bar 
foo


E. main 
foo 
bar 
foo 
foo
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Local variables
Local variables in functions live on the stack (in a stack frame)


When the function returns, variables in the stack frame for the function are 
dropped


Once a variable is dropped, it can no longer be accessed


Returning a value from a function copies it into the stack frame of the 
function being returned to


Other than returning a variable, there’s no way for the variable to live longer 
than the function (data can live longer as we’re about to see)
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Memory layout (simplified)
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Heap
Data in the heap lives longer than an individual function


Strings and Vecs store their contents on the heap


A String or Vec variable holds a pointer to the contents


Any data type that needs to hold a variable amount of data works the same 
way:

‣ Contents in the heap

‣ Pointers to the contents
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Pointers
A pointer says where data can be located in memory


At a hardware level, a pointer is nothing more than an index into memory 
where the data can be found


In Java, every Object lives in the heap and is accessed via a pointer

‣ The variables are pointers


In Rust, objects can live on the stack or in the heap

‣ Many objects (like String and Vec) contain pointers to heap memory
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import java.util.ArrayList;

public class A {
    public static void main(String[] args) {
        ArrayList<Integer> arr = new ArrayList<Integer>();
        Integer x = new Integer(10);
        Integer y = new Integer(20);
        arr.add(x);
        arr.add(y);
        System.out.println(arr.get(1));
    }
}

14

Variable Value
arr

x

y

null null null

10
20

Member Value
elementData

size 2

Heap
Stack



fn main() { 
    let mut arr: Vec<i32> = Vec::new(); 
    let x = 10; 
    let y = 20; 
    arr.push(x); 
    arr.push(y); 
    println!("{arr:?}"); 
} 
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Vec’s three members

are all on the stack

• len

• cap

• pointer


(implementation detail: cap

and pointer are nested

inside other structures, but

still on the stack)



Which of the following statements are true? 
1. A local variable in a function can outlive the function. 
2. Data in the heap can outlive the function that created it. 
3. Variable-length data (usually) live in the heap. 
4. Data on the heap is accessed using pointers

A. 1 and 2


B. 1, 2, and 3,


C. 3, and 4,


D. 2, 3, and 4


E. 1, 2, 3, 4, and 5
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Boxes—an owning pointer
We can store data in the heap by putting it in a Box

let b: Box<[i64; 1000]> = Box::new([42; 1000]); 

A Box is a type of pointer that always points to valid data in the heap


The Box owns the data it points to 

When a Box variable is dropped (e.g., because the function whose frame 
contains the variable returns), the data in the heap is freed 

Once data has been freed, it is no longer accessible
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Data on the stack vs. heap
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No manual memory management
Languages like C and C++ let programmers allocate and free heap memory

‣ malloc(n) allocates n bytes of heap memory and returns a pointer to it

‣ free(p) frees the memory pointed to by the pointer p

‣ This is a massive source of security vulnerabilities


Rust doesn’t permit manual memory management

‣ Once you allocate a Box, the data remains valid and accessible until the 

Box is dropped

‣ Once the Box is dropped, the data is freed and no longer accessible

21



No double frees
We need to reconcile two facts

‣ When a Box is dropped (e.g., because the function returns), the heap 

memory is freed

‣ When we assign a Box to a new variable, the new variable points to the 

same heap memory


let a = Box::new([0; 1_000_000]);
let b = a;

When main returns, it seems like both

a and b will be dropped and the heap

memory will be freed twice! 
Undefined behavior!
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No double frees due to ownership!
let a = Box::new([0; 1_000_000]);
let b = a;

Double frees don’t happen because  
the box was moved, not copied


After moving data, it can no longer be 
accessed by the old name


We say that b owns the Box
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Box deallocation principle
If a variable owns a Box, when Rust deallocates the variable's frame, then 
Rust deallocates the Box's heap memory


In the example, 
let b = a; 
moved the ownership of the Box from a to b


Therefore the heap memory is only 
freed once
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No use-after-free
A common vulnerability in C and C++ code is

‣ Allocate some heap memory

‣ Free the allocated memory

‣ Use the freed memory; this is undefined behavior!


In Rust, that might look something like 

    let b = Box::new(10); 
    drop(b); // Frees the allocated memory 
    println!("{b}"); 

Rust gives a compile time error
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Cannot use a variable after moving it
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Appending the string “ Jr.” causes 
the string to be reallocated


If we could continue to access first, 
it would point to freed memory! 
Undefined behavior!



Cloning
Primitive types like numeric types (i32, u64, usize, etc.) can be copied


Types that involve pointers (Box, String, Vec, etc.) cannot; they are moved


If we want to make a deep copy of a type, we can use the clone() method
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Cloning
fn main() { 
    let arr = vec![1, 2, 3, 4, 5]; 
    let arr2 = arr.clone(); 
    let arr3 = arr; 
} 
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fn foo(s: String) { /* ... */ } 

fn main() { 
    let clickers = String::from("Clickers!"); 
    foo(XXX); // <-- Here 
    println!("{clickers}"); 
} 
What should we replace XXX with to pass the clickers string to foo()?

A. clickers


B. &clickers


C. clickers.clone()


D. clone(clickers)


E. More than one of the above
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Collections
Collections like String, Vec, and HashMap use a Box internally*


When the String or Vec variable is dropped, the contents is freed


When a collection is passed as an argument to a function or returned from a function, 
only the pointer needs to be copied, not the contents 

fn make_evens(num_evens: u32) -> Vec<u32> { 
    let mut result = Vec::new(); 
    for num in 0..num_evens { 
        result.push(num * 2); 
    } 
    result 
} 
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* It’s not actually a Box, but it behaves similarly


