
CS 241: Systems Programming
Lecture 11. Ownership in Rust

Spring 2024

Prof. Stephen Checkoway

1

Memory safety
Data in programs are stored in memory (RAM)

One reasonable way to think about RAM is as a giant array of bytes

All of the data (and the program code!) is stored somewhere in that array

When you create an i64 variable, 8 bytes of memory are allocated
somewhere in the array for that variable

When you create a String, some bytes of memory hold the contents of the
string, some bytes of memory hold a pointer to the contents, some other
bytes hold the length of the string

2

Memory safety
It’s critical that it’s not possible to confuse which bytes are which

E.g., if our program can become confused about whether some memory is
an i64 or is a pointer to our string contents, anything could happen!

‣ E.g., changing the i64 could cause the pointer to change and point at

something that’s not a string or some region of memory that isn’t
allocated at all

Memory safety is all about ensuring that it’s impossible for these sorts of
errors to occur

3

Memory safety and Rust
Rust ensures that program are memory safe, e.g.,

‣ It’s impossible to confuse a pointer with an integer

‣ It’s impossible to access out-of-bounds data in an array/Vec

Most modern languages (Python, Java, Go, Haskell, Ruby, etc.) are memory-
safe

Most systems languages (C and C++) are not!

‣ Memory safety errors are common and lead to real harm

4

Ownership
Rust ensures memory safety through a concept of ownership

These are rules that the rust compiler enforces to prevent undefined
behavior

5

Stack frames
Variables live in a region of memory called the stack

The stack is organized into frames

Local variables in functions live in a stack frame

Each function that is called pushes a new frame onto the stack

Each function that returns pops its stack frame off the stack

6

7

Every variable gets its own slot

8

fn foo() {
 // What does the stack look
 // like in this function…
}

fn bar() {
 foo();
}

fn main() {
 foo();
 bar();
 foo(); // …when called here?
}

A. main

B. foo

C. main 
foo

D. main 
bar 
foo

E. main 
foo 
bar 
foo 
foo

9

Local variables
Local variables in functions live on the stack (in a stack frame)

When the function returns, variables in the stack frame for the function are
dropped

Once a variable is dropped, it can no longer be accessed

Returning a value from a function copies it into the stack frame of the
function being returned to

Other than returning a variable, there’s no way for the variable to live longer
than the function (data can live longer as we’re about to see)

10

Memory layout (simplified)

11

Stack

Heap

Global data

Code
Low memory address

High memory address

Stack grows down

Heap grows up

Global data and 
Code are fixed size

Heap
Data in the heap lives longer than an individual function

Strings and Vecs store their contents on the heap

A String or Vec variable holds a pointer to the contents

Any data type that needs to hold a variable amount of data works the same
way:

‣ Contents in the heap

‣ Pointers to the contents

12

Pointers
A pointer says where data can be located in memory

At a hardware level, a pointer is nothing more than an index into memory
where the data can be found

In Java, every Object lives in the heap and is accessed via a pointer

‣ The variables are pointers

In Rust, objects can live on the stack or in the heap

‣ Many objects (like String and Vec) contain pointers to heap memory

13

import java.util.ArrayList;

public class A {
 public static void main(String[] args) {
 ArrayList<Integer> arr = new ArrayList<Integer>();
 Integer x = new Integer(10);
 Integer y = new Integer(20);
 arr.add(x);
 arr.add(y);
 System.out.println(arr.get(1));
 }
}

14

Variable Value
arr

x

y

null null null

10
20

Member Value
elementData

size 2

Heap
Stack

fn main() {
 let mut arr: Vec<i32> = Vec::new();
 let x = 10;
 let y = 20;
 arr.push(x);
 arr.push(y);
 println!("{arr:?}");
}

15

16

Vec’s three members

are all on the stack

• len

• cap

• pointer

(implementation detail: cap

and pointer are nested

inside other structures, but

still on the stack)

Which of the following statements are true? 
1. A local variable in a function can outlive the function. 
2. Data in the heap can outlive the function that created it. 
3. Variable-length data (usually) live in the heap. 
4. Data on the heap is accessed using pointers

A. 1 and 2

B. 1, 2, and 3,

C. 3, and 4,

D. 2, 3, and 4

E. 1, 2, 3, 4, and 5

17

Boxes—an owning pointer
We can store data in the heap by putting it in a Box

let b: Box<[i64; 1000]> = Box::new([42; 1000]);

A Box is a type of pointer that always points to valid data in the heap

The Box owns the data it points to

When a Box variable is dropped (e.g., because the function whose frame
contains the variable returns), the data in the heap is freed

Once data has been freed, it is no longer accessible

18

19

Data on the stack vs. heap

20

No manual memory management
Languages like C and C++ let programmers allocate and free heap memory

‣ malloc(n) allocates n bytes of heap memory and returns a pointer to it

‣ free(p) frees the memory pointed to by the pointer p

‣ This is a massive source of security vulnerabilities

Rust doesn’t permit manual memory management

‣ Once you allocate a Box, the data remains valid and accessible until the

Box is dropped

‣ Once the Box is dropped, the data is freed and no longer accessible

21

No double frees
We need to reconcile two facts

‣ When a Box is dropped (e.g., because the function returns), the heap

memory is freed

‣ When we assign a Box to a new variable, the new variable points to the

same heap memory

let a = Box::new([0; 1_000_000]);
let b = a;

When main returns, it seems like both

a and b will be dropped and the heap

memory will be freed twice! 
Undefined behavior!

22

No double frees due to ownership!
let a = Box::new([0; 1_000_000]);
let b = a;

Double frees don’t happen because  
the box was moved, not copied

After moving data, it can no longer be 
accessed by the old name

We say that b owns the Box

23

Box deallocation principle
If a variable owns a Box, when Rust deallocates the variable's frame, then
Rust deallocates the Box's heap memory

In the example, 
let b = a; 
moved the ownership of the Box from a to b

Therefore the heap memory is only 
freed once

24

No use-after-free
A common vulnerability in C and C++ code is

‣ Allocate some heap memory

‣ Free the allocated memory

‣ Use the freed memory; this is undefined behavior!

In Rust, that might look something like 

 let b = Box::new(10);
 drop(b); // Frees the allocated memory
 println!("{b}");

Rust gives a compile time error

25

Cannot use a variable after moving it

26

Appending the string “ Jr.” causes 
the string to be reallocated

If we could continue to access first, 
it would point to freed memory! 
Undefined behavior!

Cloning
Primitive types like numeric types (i32, u64, usize, etc.) can be copied

Types that involve pointers (Box, String, Vec, etc.) cannot; they are moved

If we want to make a deep copy of a type, we can use the clone() method

27

Cloning
fn main() {
 let arr = vec![1, 2, 3, 4, 5];
 let arr2 = arr.clone();
 let arr3 = arr;
}

28

fn foo(s: String) { /* ... */ }

fn main() {
 let clickers = String::from("Clickers!");
 foo(XXX); // <-- Here
 println!("{clickers}");
}
What should we replace XXX with to pass the clickers string to foo()?

A. clickers

B. &clickers

C. clickers.clone()

D. clone(clickers)

E. More than one of the above

29

Collections
Collections like String, Vec, and HashMap use a Box internally*

When the String or Vec variable is dropped, the contents is freed

When a collection is passed as an argument to a function or returned from a function,
only the pointer needs to be copied, not the contents 

fn make_evens(num_evens: u32) -> Vec<u32> {
 let mut result = Vec::new();
 for num in 0..num_evens {
 result.push(num * 2);
 }
 result
}

30
* It’s not actually a Box, but it behaves similarly

