
CS 241: Systems Programming
Lecture 8. Introduction to Rust

Spring 2024

Prof. Stephen Checkoway

1

Hello, World!

Every program needs a main function

println!() prints a string and a newline to stdout

All of the executable code lives in a function (unlike Python)

2

fn main() {
 println!("Hello world!");
}

Compiling and running
Use rustc to compile (will perform both compiling and linking by default)

‣ $ rustc helloworld.rs

rustc produces the executable helloworld

To run a program from the current directory, use ./ as usual:

‣ $./helloworld
Hello world!

3

http://helloworld.rs

Jobs of a Compiler
Inputs

‣ Rust program files and options

‣ Libraries

Compilation phases

‣ Compilation — Turns source files into object files

‣ Linking — Combines object files into executables

Outputs

‣ Executable

‣ Warnings and errors

4

Compilation

Java Model Rust Model

*.java

*.class

Run with JVM

javac

Native executable

*.rs

*.o
rustc

linker

Basic types
Integer types

‣ Signed integer types (can be negative): i8, i16, i32, i64, i128

• Equivalent to Java’s byte, short, int, and long

• i32 is the default when not specified

‣ Unsigned integer types (only nonnegative): u8, u16, u32, u64, u128

Floating point types

‣ f32 and f64

‣ Equivalent to Java’s float and double

String types

‣ String and &str

6

More basic types
Boolean type: bool

‣ Values are true and false

Character type: char

‣ 4-bytes in size, holds one Unicode code point which represents one

simple character like B or 한 or 😍 but not complex characters like 🇺🇸

Platform-dependent integer types

‣ usize: 32-bit or 64-bit unsigned integer

• Used as an index or as a count of items in a collection

‣ isize: signed version of usize

7

Unit type: ()
The unit type () has one value: ()

let unit: () = ();

There isn’t much you can do with it, but we’ll actually be seeing it quite a bit

8

Introduce variables with let
let variable_name: type = value;

fn compute_area() {
 let width: u64 = 100;
 let height: u64 = 24;
 let area = width * height;

 println!("{width} x {height} = {area}");
}

9

Function arguments/return value
fn function_name(arg1: type1, arg2: type2) -> return_type {}

fn compute_area(width: u64, height: u64) -> u64 {
 let area = width * height;
 return area;
}

fn main() {
 let area = compute_area(20, 40);
 println!("The area is {area}");
}

10

You’re designing a function, neg(), that takes an argument of type i32 and
returns an i32 with the opposite sign (i.e., positive values become negative
and negative values become positive). Which of the options is the correct
way to specify this?

A. i32 neg(i32 val) {
 return -val;
}

B. fn i32 neg(val: i32) {
 return -val;
}

C. fn neg(val: i32) -> i32 {
 return -val;
}

D. fn neg(i32 val) -> i32 {
 return -val;
}

11

Returning a String
fn rectangle_description(width: u64, height: u64) -> String {
 let desc: String;

 if width == height {
 desc = format!("{width} x {width} square");
 } else {
 desc = format!("{width} x {height} rectangle");
 }
 return desc;
}

12

Blocks have values
 let val = {
 let x = 10;
 let y = 20;
 x + y
 };

The value of a block of code in braces is the value of the last expression in the
block

Notice the lack of ; at the end of the block and the ; after the block

The value of an if expression is the value of the last expression of its branches
13

Variables’ scope ends at the end of their
containing block
The scope of a variable is the region of code where the variable is accessible

fn main() {
 let val = {
 let x = 10;
 let y = 20;
 x + y
 };
 println!("{val}"); // OK
 println!("{x} {y}"); // Not OK
}
error[E0425]: cannot find value `x` in this scope
 --> foo.rs:8:16
 |
143 | println!("{x} {y}"); // Not OK
 | ^ not found in this scope

14

if is an expression, it has a value
fn rectangle_description(width: u64, height: u64) -> String {
 let desc = if width == height {
 format!("{width} x {width} square")
 } else {
 format!("{width} x {height} rectangle")
 };
 return desc;
}

The value of an if expression is the value of the last expression of its taken
branch

Notice the lack of ; at the end of both blocks of the if and the ; after the if
15

Last expression in a function is returned
fn rectangle_description(width: u64, height: u64) -> String {
 let desc = if width == height {
 format!("{width} x {width} square")
 } else {
 format!("{width} x {height} rectangle")
 };
 desc
}

The return is gone as is the semicolon

16

Idiomatic Rust

17

fn rectangle_description(width: u64, height: u64) -> String {
 if width == height {
 format!("{width} x {width} square")
 } else {
 format!("{width} x {height} rectangle")
 }
}

The value returned from the function is the value of the last expression: the if

The value of the if is the value of the last expression of the taken branch of the
if

What is the “Rusty” way to write the neg() function? Meaning, which of these
is the best practice?

A. fn neg(val: i32) -> i32 {
 -val
}

B. fn neg(val: i32) -> i32 {
 -val;
}

C. fn neg(val: i32) -> i32 {
 return -val
}

D. fn neg(val: i32) -> i32 {
 return -val;
}

18

Mutability
Variables are immutable by default (they cannot be changed)

Let’s experiment with the Rust Playground 
https://play.rust-lang.org

19

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=cf307bfae62c1d4f566b09be2ec5b80f

cannot assign twice to immutable variable
Error indicates we tried to modify an immutable variable

Error message indicates a solution

‣ help: consider making this binding mutable: `mut x`

let mut x = 10;
println!("{x}");
x = 20;
println!("{x}");

20

Group discussion: Why do you think variables are immutable by default in
Rust when most languages make them mutable by default?

A. Select this answer

21

Strings
A String holds an owned collection of characters

‣ Owned means the collection of characters belongs to the String value

A &str is an immutable reference to a string

‣ References are a way to share values

Text in double quotes is a &str, a reference to an immutable string

We can create a String from a &str using String::from()

let s1: &str = "Điếc không sợ súng.";
let s2: String = String::from("Ignorance is bliss.");

22

Omitting the type
let s1 = "Điếc không sợ súng.";
let s2 = String::from("Ignorance is bliss.");

The type of a variable is often omitted when it is clear from context

‣ Strings in double quotes are always &str so the type is omitted

‣ When the type name appears on the right-hand side of the =, the type is

omitted

23

Converting between &str and String
String::from(s) creates a String from a &str by making a copy of the
string

"foo".to_string() also creates a String from a &str by making a
copy of the string

A String’s as_str() method returns a &str reference to itself, no copy is
made

let s1 = String::from("blah");
let s2 = s1.as_str();

24

Example
fn main() {
 let s = String::from("Hello world!"); // L2
 let r = s.as_str(); // L3
 let s2 = s.to_string(); // L4
}

25

Passing strings to functions
fn foo(arg: String) {}
fn bar(arg: &str) {}

fn main() {
 let s = String::from("abc");
 foo(s); // Valid, moves s into foo
 foo("abc"); // Invalid, foo() expects a String

 let t = String::from("xyz");
 bar(&t); // Valid, passes a reference to t to bar
 bar("xyz"); // Valid
}

26

Returning &str is hard
There are two problems with this function: 

fn foo(num: i32) -> &str {
 let s = format!("num = {num}");
 return &s;
}

1. Rustc gives an error, “expected named lifetime parameter” (we’ll talk
about lifetimes later 
 
2. More importantly, s goes away when the function ends so the reference to
it would be invalid; Rust prevents this.

27

Aside, C doesn’t prevent this!
#include <stdio.h>

char *foo(int num) {
 char str[100];
 snprintf(str, sizeof(str), "num = %d", num);
 return str;
}

int main() {
 char *str = foo(123);
 puts(str);
 return 0;
}

28

Aside, C doesn’t prevent this!
#include <stdio.h>

char *foo(int num) {
 char str[100];
 snprintf(str, sizeof(str), "num = %d", num);
 return str;
}

int main() {
 char *str = foo(123);
 puts(str);
 return 0;
}

28

What happens
when we run
this?

Aside, C doesn’t prevent this!
#include <stdio.h>

char *foo(int num) {
 char str[100];
 snprintf(str, sizeof(str), "num = %d", num);
 return str;
}

int main() {
 char *str = foo(123);
 puts(str);
 return 0;
}

28

What happens
when we run
this?

$./example
`\M

$./example
`?

$./example
`??

General rule of strings
When passing a string to a function, use a &str reference

When returning a string from a function, return a String

These rules don’t always hold, later we’ll see how to return a &str in some
cases

29

