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Version control system (VCS)
A way to track changes to your files

‣ What you changed

‣ Why you changed it

A way to keep “backups” of older versions

A way to keep track of different versions (branches) of a project

‣ Development

‣ Release

A way to organize and collaborate on a project
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VCS history (abridged)
SCCS → RCS → CVS → SVN → {Git, Mercurial, …}


1972 — Source Code Control System (SCCS)

1985 — Revision Control System (RCS)

‣ All users on the same system, each with their own checkout of the files


1986 — Concurrent Versioning System (CVS)

‣ Client/server model


2000 — Subversion (SVN)

‣ Essentially a better CVS


2005 — Git and Mercurial

‣ Distributed model: each user has their own copy of the whole repository
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VCS history (abridged)
SCCS → RCS → CVS → SVN → {Git, Mercurial, …}


SCCS/RCS

‣ Master repository with all history stored somewhere, e.g., 
/source/program

‣ Individual users checkout the current version somewhere else, e.g., 
~/program


‣ Modifications can be checked in to the master repo

‣ Other users' modifications can be checked out again

‣ The history of files and their differences can be shown
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VCS history (abridged)
SCCS → RCS → CVS → SVN → {Git, Mercurial, …}


CVS/SVN

‣ Master repo stored on some server, e.g., 
vcs.oberlin.edu:/vcs/program

‣ Users on many different machines can checkout copies, e.g., 
clyde.cs.oberlin.edu:~/program


‣ Changes to files are committed to the server which maintains the 
authoritative copy of the repository history


‣ Local copies can be updated with other users' changes from the server

‣ Multiple branches, but each with a linear commit history (r1, r2, r3, …)
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VCS history (abridged)
SCCS → RCS → CVS → SVN → {Git, Mercurial, …}


Git/Mercurial

‣ Decentralized

• Each user has a full copy of the repo

• No authoritative version


‣ Users can push changes to other users or pull changes from others

‣ Multiple, lightweight branches

‣ History is not linear, it's a DAG (we'll see what this means shortly)

‣ Decentralization is hard to deal with: use Github (or similar)
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Git
A distributed version control system

‣ Everyone can act as a “server”

‣ Everyone mirrors the entire repository


Many local operations

‣ Quick to add files, commit, create new branches, etc.

‣ Can have local changes w/o pushing to others


Collaborate with other developers

‣ “Push” and “pull” code from hosted repositories such as Github
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Initial setup
$ git config --global user.name 'Stephen Checkoway'
$ git config --global user.email \ 

'stephen.checkoway@oberlin.edu'
$ git config --global core.editor vim

Global config values are stored in ~/.gitconfig


Can also have local config settings in ${repo}/.git/config
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Creating a repository
$ mkdir project  
$ cd project  
$ git init

Creates a .git folder in project


No files are currently being tracked or managed


No remote server
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Cloning a (remote) repository
$ git clone https://github.com/klange/nyancat.git

Creates a local copy of the repo 
including the whole history


Associated with a remote server
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Cloning a (remote) repository
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Cloning a (remote) repository
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Warning: Git is ridiculous
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Working dir vs staging vs .git
After git init or git clone, you have 
a working directory on the file system

‣ Holds one version of the files in the 

repo


Inside it (usually) is a .git directory with

‣ The whole history of the repo (all 

commits)

‣ config options, branches, etc.


Conceptional staging area

‣ Holds files to be committed
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Adding and committing
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Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area
$ vim hello.py # Create some code
$ git add hello.py # Add the hello.py to the staging area
$ git commit # Commit the files to the repo
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Adding and committing
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Commits
Each commit is (in essence) a snapshot of the repository


Commits are named by a hash of their contents, e.g., 
	 c37ce054c766b79a3577aba898b296d3557c3d24, 
often just the first 7 digits: c37ce05

Each commit links to its parent commit(s)

15



Adding and committing

16

Working directory Staging area Git directory

README

hello.py
82F1A6



Adding and committing
$ vim hello.py # Modify the code

16

Working directory Staging area Git directory

README

hello.py
82F1A6



Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes

16

Working directory Staging area Git directory

README

hello.py
82F1A6



Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog



Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog



Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

hello.py



Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

hello.py



Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

hello.py

ChangeLog



Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog
$ git commit # Commit the files to the repo

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

hello.py

ChangeLog



Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog
$ git commit # Commit the files to the repo
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You've just cloned a repository from github, cd'd into the repo's directory, 
and created a new file. 
$ git clone git@github.com:username/example-project.git  
$ cd example-project  
$ vim foo.sh


What command(s) should you run to commit this new file to the repo?

A. $ git add foo.sh

B. $ git commit foo.sh

C. $ git add foo.sh  
$ git commit

D. $ git add foo.sh  
$ git push

E. $ git add --commit foo.sh
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After adding and committing initially, you've been working on foo.sh for a 
while and want to commit again.


What command(s) should you run to commit your changes repo?

A. $ git add foo.sh

B. $ git commit foo.sh

C. $ git add foo.sh  
$ git commit

D. $ git commit foo.sh  
$ git push

E. $ git add --commit foo.sh

18



Commit Message
When doing a commit, your editor will be opened so you can enter a commit 
message

‣ Short summary line

‣ Blank line

‣ Longer description


Try to provide enough detail that you can read the message to understand 
what changes were made (and why)

‣ Might be easy to remember now, but in 6 months?
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Naming commits
Individual commits can have human-readable names

‣ HEAD is the currently checked out commit

‣ main is most recent commit on the default branch (which is itself 

named main)

‣ main used to be named master, lots of documentation still refers to 
master


‣ tags and branches give names to commits
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Example

After two commits, HEAD and main point to the second commit


After a third commit, HEAD and main point to the third commit
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HEAD != main

We can create a new branch fix-bug and commit to that branch


We can also keep committing to main


HEAD points to the branch we have checked out
22
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Pushing to the remote server
$ git push

Sends to the remote server all of your committed data (it doesn't already have)


Remote servers are called remotes

‣ When cloning, the remote is named origin by default

‣ Remotes have their own branches origin/main is origin's main 

branch
‣ It's possible to have multiple remotes (but we probably won't in this class)
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Pulling from the remote server
$ git pull

Pulls changes from the remote server to the local repo and merges with the 
local changes


$ git pull --rebase

Pulls changes from the remote server to the local repo and rebases local 
commits on top of remote commits
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Pulling with merging
Commits from the remote will be added to the local repository 
If there are local commits, git tries to merge them by creating a new commit

 
      A---B---C main on origin
     /
D---E---F---G main
    ^
    origin/main in your repository

      A---B---C origin/main
     /         \
D---E---F---G---H main
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Pulling with rebasing
Commits from the remote will be added to the local repository 
If there are local commits, git replays them on top of the new commits

 
      A---B---C main on origin
     /
D---E---F---G main
    ^
    origin/main in your repository

                origin/main
                v
D---E---A---B---C---F'--G' main
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Reminder: Git is ridiculous
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Gitting help
$ git --help

$ git init --help

$ git clone --help

$ git add --help

$ git commit --help

$ git push --help

$ git pull --help
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Basic Lab Workflow
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Basic Lab Workflow
Create the repository by clicking on the link in the lab

Clone the repository on lab machines using $ gh repo clone ⟨url⟩

Add files to be committed with  $ git add ⟨filename⟩

Create a commit (snapshot) of added files using $ git commit

Push files to the server using $ git push

See the current state of the files using $ git status
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Commit often
Commits are cheap, commit often


Commits can be reverted by git revert

‣ Makes a new commit that undoes the old commit

‣ $ git revert ⟨commit_hash⟩

Commits that haven't been pushed can be undone completely by 
git reset

‣ $ git reset --hard ⟨commit_hash⟩

Demo at https://jmegner.github.io/visualizing-git/
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