
CS 241: Systems Programming
Lecture 5. Version Control/Git

Spring 2024

Prof. Stephen Checkoway

1

Version control system (VCS)

2

Version control system (VCS)
A way to track changes to your files

‣ What you changed

‣ Why you changed it

2

Version control system (VCS)
A way to track changes to your files

‣ What you changed

‣ Why you changed it

A way to keep “backups” of older versions

2

Version control system (VCS)
A way to track changes to your files

‣ What you changed

‣ Why you changed it

A way to keep “backups” of older versions

A way to keep track of different versions (branches) of a project

‣ Development

‣ Release

2

Version control system (VCS)
A way to track changes to your files

‣ What you changed

‣ Why you changed it

A way to keep “backups” of older versions

A way to keep track of different versions (branches) of a project

‣ Development

‣ Release

A way to organize and collaborate on a project

2

VCS history (abridged)
SCCS → RCS → CVS → SVN → {Git, Mercurial, …}

1972 — Source Code Control System (SCCS)

1985 — Revision Control System (RCS)

‣ All users on the same system, each with their own checkout of the files

1986 — Concurrent Versioning System (CVS)

‣ Client/server model

2000 — Subversion (SVN)

‣ Essentially a better CVS

2005 — Git and Mercurial

‣ Distributed model: each user has their own copy of the whole repository

3

VCS history (abridged)
SCCS → RCS → CVS → SVN → {Git, Mercurial, …}

SCCS/RCS

‣ Master repository with all history stored somewhere, e.g., 
/source/program

‣ Individual users checkout the current version somewhere else, e.g., 
~/program

‣ Modifications can be checked in to the master repo

‣ Other users' modifications can be checked out again

‣ The history of files and their differences can be shown

4

VCS history (abridged)
SCCS → RCS → CVS → SVN → {Git, Mercurial, …}

CVS/SVN

‣ Master repo stored on some server, e.g., 
vcs.oberlin.edu:/vcs/program

‣ Users on many different machines can checkout copies, e.g., 
clyde.cs.oberlin.edu:~/program

‣ Changes to files are committed to the server which maintains the
authoritative copy of the repository history

‣ Local copies can be updated with other users' changes from the server

‣ Multiple branches, but each with a linear commit history (r1, r2, r3, …)

5

VCS history (abridged)
SCCS → RCS → CVS → SVN → {Git, Mercurial, …}

Git/Mercurial

‣ Decentralized

• Each user has a full copy of the repo

• No authoritative version

‣ Users can push changes to other users or pull changes from others

‣ Multiple, lightweight branches

‣ History is not linear, it's a DAG (we'll see what this means shortly)

‣ Decentralization is hard to deal with: use Github (or similar)

6

Git
A distributed version control system

‣ Everyone can act as a “server”

‣ Everyone mirrors the entire repository

Many local operations

‣ Quick to add files, commit, create new branches, etc.

‣ Can have local changes w/o pushing to others

Collaborate with other developers

‣ “Push” and “pull” code from hosted repositories such as Github

7

Initial setup
$ git config --global user.name 'Stephen Checkoway'
$ git config --global user.email \

'stephen.checkoway@oberlin.edu'
$ git config --global core.editor vim

Global config values are stored in ~/.gitconfig

Can also have local config settings in ${repo}/.git/config

8

Creating a repository
$ mkdir project  
$ cd project  
$ git init

Creates a .git folder in project

No files are currently being tracked or managed

No remote server

9

Cloning a (remote) repository
$ git clone https://github.com/klange/nyancat.git

Creates a local copy of the repo 
including the whole history

Associated with a remote server

10

Cloning a (remote) repository

11

Cloning a (remote) repository

11

Warning: Git is ridiculous

12

Working dir vs staging vs .git
After git init or git clone, you have
a working directory on the file system

‣ Holds one version of the files in the

repo

Inside it (usually) is a .git directory with

‣ The whole history of the repo (all

commits)

‣ config options, branches, etc.

Conceptional staging area

‣ Holds files to be committed

13

Adding and committing

14

Working directory Staging area Git directory

Adding and committing
$ vim README # Create a readme describing the project

14

Working directory Staging area Git directory

Adding and committing
$ vim README # Create a readme describing the project

14

Working directory Staging area Git directory

README

Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area

14

Working directory Staging area Git directory

README

Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area

14

Working directory Staging area Git directory

README README

Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area
$ vim hello.py # Create some code

14

Working directory Staging area Git directory

README README

Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area
$ vim hello.py # Create some code

14

Working directory Staging area Git directory

README

hello.py

README

Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area
$ vim hello.py # Create some code
$ git add hello.py # Add the hello.py to the staging area

14

Working directory Staging area Git directory

README

hello.py

README

Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area
$ vim hello.py # Create some code
$ git add hello.py # Add the hello.py to the staging area

14

Working directory Staging area Git directory

README

hello.py

README

hello.py

Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area
$ vim hello.py # Create some code
$ git add hello.py # Add the hello.py to the staging area
$ git commit # Commit the files to the repo

14

Working directory Staging area Git directory

README

hello.py

README

hello.py

Adding and committing
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area
$ vim hello.py # Create some code
$ git add hello.py # Add the hello.py to the staging area
$ git commit # Commit the files to the repo

14

Working directory Staging area Git directory

README

hello.py
82F1A6

Commits
Each commit is (in essence) a snapshot of the repository

Commits are named by a hash of their contents, e.g., 
	 c37ce054c766b79a3577aba898b296d3557c3d24, 
often just the first 7 digits: c37ce05

Each commit links to its parent commit(s)

15

Adding and committing

16

Working directory Staging area Git directory

README

hello.py
82F1A6

Adding and committing
$ vim hello.py # Modify the code

16

Working directory Staging area Git directory

README

hello.py
82F1A6

Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes

16

Working directory Staging area Git directory

README

hello.py
82F1A6

Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

hello.py

Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

hello.py

Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

hello.py

ChangeLog

Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog
$ git commit # Commit the files to the repo

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog

hello.py

ChangeLog

Adding and committing
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py # Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog
$ git commit # Commit the files to the repo

16

Working directory Staging area Git directory

README

hello.py
82F1A6

ChangeLog
F00D11

You've just cloned a repository from github, cd'd into the repo's directory,
and created a new file. 
$ git clone git@github.com:username/example-project.git  
$ cd example-project  
$ vim foo.sh

What command(s) should you run to commit this new file to the repo?

A. $ git add foo.sh

B. $ git commit foo.sh

C. $ git add foo.sh  
$ git commit

D. $ git add foo.sh  
$ git push

E. $ git add --commit foo.sh

17

After adding and committing initially, you've been working on foo.sh for a
while and want to commit again.

What command(s) should you run to commit your changes repo?

A. $ git add foo.sh

B. $ git commit foo.sh

C. $ git add foo.sh  
$ git commit

D. $ git commit foo.sh  
$ git push

E. $ git add --commit foo.sh

18

Commit Message
When doing a commit, your editor will be opened so you can enter a commit
message

‣ Short summary line

‣ Blank line

‣ Longer description

Try to provide enough detail that you can read the message to understand
what changes were made (and why)

‣ Might be easy to remember now, but in 6 months?

19

Naming commits
Individual commits can have human-readable names

‣ HEAD is the currently checked out commit

‣ main is most recent commit on the default branch (which is itself

named main)

‣ main used to be named master, lots of documentation still refers to
master

‣ tags and branches give names to commits

20

Example

After two commits, HEAD and main point to the second commit

After a third commit, HEAD and main point to the third commit

21

main main

HEAD != main

We can create a new branch fix-bug and commit to that branch

We can also keep committing to main

HEAD points to the branch we have checked out
22

main

Pushing to the remote server
$ git push

Sends to the remote server all of your committed data (it doesn't already have)

Remote servers are called remotes

‣ When cloning, the remote is named origin by default

‣ Remotes have their own branches origin/main is origin's main

branch
‣ It's possible to have multiple remotes (but we probably won't in this class)

23

Example

24

OriginLocal repository

main

Example
$ git clone …

24

OriginLocal repository

main

Example
$ git clone …

24

OriginLocal repository

main main

main

Example
$ git clone …

$ git add …  
$ git commit  
$ git add …  
$ git commit

24

OriginLocal repository

main main

main

Example
$ git clone …

$ git add …  
$ git commit  
$ git add …  
$ git commit

24

OriginLocal repository

main main

main main

main

main

Example
$ git clone …

$ git add …  
$ git commit  
$ git add …  
$ git commit

$ git push

24

OriginLocal repository

main main

main main

main

main

Example
$ git clone …

$ git add …  
$ git commit  
$ git add …  
$ git commit

$ git push

24

OriginLocal repository

main main

main main

main main

main

main

main

Pulling from the remote server
$ git pull

Pulls changes from the remote server to the local repo and merges with the
local changes

$ git pull --rebase

Pulls changes from the remote server to the local repo and rebases local
commits on top of remote commits

25

Pulling with merging
Commits from the remote will be added to the local repository 
If there are local commits, git tries to merge them by creating a new commit

 
 A---B---C main on origin
 /
D---E---F---G main
 ^
 origin/main in your repository

 A---B---C origin/main
 / \
D---E---F---G---H main

26

Pulling with rebasing
Commits from the remote will be added to the local repository 
If there are local commits, git replays them on top of the new commits

 
 A---B---C main on origin
 /
D---E---F---G main
 ^
 origin/main in your repository

 origin/main
 v
D---E---A---B---C---F'--G' main

27

Reminder: Git is ridiculous

28

Gitting help
$ git --help

$ git init --help

$ git clone --help

$ git add --help

$ git commit --help

$ git push --help

$ git pull --help
29

Basic Lab Workflow

30

Basic Lab Workflow
Create the repository by clicking on the link in the lab

30

Basic Lab Workflow
Create the repository by clicking on the link in the lab

Clone the repository on lab machines using $ gh repo clone ⟨url⟩

30

Basic Lab Workflow
Create the repository by clicking on the link in the lab

Clone the repository on lab machines using $ gh repo clone ⟨url⟩

Add files to be committed with $ git add ⟨filename⟩

30

Basic Lab Workflow
Create the repository by clicking on the link in the lab

Clone the repository on lab machines using $ gh repo clone ⟨url⟩

Add files to be committed with $ git add ⟨filename⟩

Create a commit (snapshot) of added files using $ git commit

30

Basic Lab Workflow
Create the repository by clicking on the link in the lab

Clone the repository on lab machines using $ gh repo clone ⟨url⟩

Add files to be committed with $ git add ⟨filename⟩

Create a commit (snapshot) of added files using $ git commit

Push files to the server using $ git push

30

Basic Lab Workflow
Create the repository by clicking on the link in the lab

Clone the repository on lab machines using $ gh repo clone ⟨url⟩

Add files to be committed with $ git add ⟨filename⟩

Create a commit (snapshot) of added files using $ git commit

Push files to the server using $ git push

See the current state of the files using $ git status

30

Commit often
Commits are cheap, commit often

Commits can be reverted by git revert

‣ Makes a new commit that undoes the old commit

‣ $ git revert ⟨commit_hash⟩

Commits that haven't been pushed can be undone completely by 
git reset

‣ $ git reset --hard ⟨commit_hash⟩

Demo at https://jmegner.github.io/visualizing-git/
31

