
CS 241: Systems Programming

Lecture 29. Regular Expressions I

Fall 2023

Prof. Stephen Checkoway

1

Theory of regular languages
Mathematical theory of sets of strings

‣ You'll see this in CS 383

Connection to finite state machines

2

Theory of regular languages
Mathematical theory of sets of strings

‣ You'll see this in CS 383

Connection to finite state machines

2

We're going to skip all of this for this course!

Problem we want to solve
Identify and/or extract text that matches a given pattern

Examples

‣ Determine if a text string matches the pattern

‣ Find all lines of text in a file containing a given word

‣ Extract all phone numbers from a file

‣ Extract fields from structured text

‣ Classify types of text (e.g., compilers need to determine if some text is

a number like 0x7D2 or symbols like == or keywords like fn)

‣ Find all of the tags in an HTML file

Approach: Use a regular expression to specify the pattern

3

grep(1)
grep matches lines of input against a given regular expression (regex),
printing each line that matches (or does not match)

$ grep 'Computer Science' file
‣ prints each line of file that contains the string "Computer Science"

More generally, 
$ grep regex file  
will print each line of file that matches the regular expression regex

4

What is a regular expression?
Text that describes a search pattern

Comes in a variety of "flavors"

‣ Basic Regular Expression (BRE)

‣ Extended Regular Expression (ERE)

‣ Perl-Compatible Regular Expressions (PCRE)

Be careful not to confuse with file globbing which uses similar special
characters like * and ? but with slightly different meanings

5

Baseline regex characters

6

Baseline regex characters
.	 (period) any single character except newline

6

Baseline regex characters
.	 (period) any single character except newline
*	 0 or more of the preceding item (greedy)

6

Baseline regex characters
.	 (period) any single character except newline
*	 0 or more of the preceding item (greedy)
^	 start of a line

6

Baseline regex characters
.	 (period) any single character except newline
*	 0 or more of the preceding item (greedy)
^	 start of a line
$	 end of the line

6

Baseline regex characters
.	 (period) any single character except newline
*	 0 or more of the preceding item (greedy)
^	 start of a line
$	 end of the line
[]	 match one of the enclosed characters

‣ [a-z]	matches a range

‣ [^]	 reverses the sense of match

‣ put] or – at start to be a member of the list

6

Baseline regex characters
.	 (period) any single character except newline
*	 0 or more of the preceding item (greedy)
^	 start of a line
$	 end of the line
[]	 match one of the enclosed characters

‣ [a-z]	matches a range

‣ [^]	 reverses the sense of match

‣ put] or – at start to be a member of the list

Every other character just matches itself; precede any of the above with \ to
treat as a normal character that must literally match

6

Examples

7

Examples
a	 Anything with the letter 'a'

7

Examples
a	 Anything with the letter 'a'
abc	 Anything with the string 'abc'

7

Examples
a	 Anything with the letter 'a'
abc	 Anything with the string 'abc'
a.c	 'a' followed by any char then 'c'

7

Examples
a	 Anything with the letter 'a'
abc	 Anything with the string 'abc'
a.c	 'a' followed by any char then 'c'
^a	 Line starting with 'a'

7

Examples
a	 Anything with the letter 'a'
abc	 Anything with the string 'abc'
a.c	 'a' followed by any char then 'c'
^a	 Line starting with 'a'
a$	 Line ending with 'a'

7

Examples
a	 Anything with the letter 'a'
abc	 Anything with the string 'abc'
a.c	 'a' followed by any char then 'c'
^a	 Line starting with 'a'
a$	 Line ending with 'a'
^a$	 Line consisting of a single 'a' on it

7

Examples
a	 Anything with the letter 'a'
abc	 Anything with the string 'abc'
a.c	 'a' followed by any char then 'c'
^a	 Line starting with 'a'
a$	 Line ending with 'a'
^a$	 Line consisting of a single 'a' on it
a.*b	 'a' then anything else, then 'b' (includes 'ab')

7

Examples
a	 Anything with the letter 'a'
abc	 Anything with the string 'abc'
a.c	 'a' followed by any char then 'c'
^a	 Line starting with 'a'
a$	 Line ending with 'a'
^a$	 Line consisting of a single 'a' on it
a.*b	 'a' then anything else, then 'b' (includes 'ab')
[abc]	 One of 'a', 'b', or 'c'

7

Examples
a	 Anything with the letter 'a'
abc	 Anything with the string 'abc'
a.c	 'a' followed by any char then 'c'
^a	 Line starting with 'a'
a$	 Line ending with 'a'
^a$	 Line consisting of a single 'a' on it
a.*b	 'a' then anything else, then 'b' (includes 'ab')
[abc]	 One of 'a', 'b', or 'c'

7

Valid identifiers in Rust* (things like variable or function names) 
1. start with either a letter or an underscore; and 
2. consist of letters, numbers, or underscores.

E.g., main, foo_bar, _Okay123XY are valid identifiers; 
but 32x, foo-bar, and &blah are not

Which regular expression describes valid Rust identifiers?
A. [a-zA-Z0-9_]*

B. [a-zA-Z0-9_][a-zA-Z0-9_]*

C. [a-zA-Z_][a-zA-Z0-9_]*

D. [^0-9][a-zA-Z0-9_]*

8
*Not totally true. Rust has “raw” identifiers as well, ignore those

Basic regex (obsolete)
\{m,n\}	 match previous item at least m times, but at most n times

\{m\}	 	 match previous item exactly m times

\{m,\}	 	 match previous item at least m times

\(\)	 	 group and save enclosed pattern match

‣ \1	 	 the first saved match

‣ \5	 	 the fifth saved match

‣ Using such "back references" makes it not a real regular expression and

should be avoided

9

Extended regex (modern)
{m,n}	 match previous item at least m times, but at most n times

()	 	 group and save enclosed pattern match

+	 	 	 match 1 or more of the previous {1,}

?	 	 	 match previous 0 or 1 time {0,1}

|	 	 	 match RE either before or after

‣ 	 apple|banana

10

(ab|c+){2} 	 'abab', 'abc', 'abcccc', 'cab', 'cccab' 'ccccccccc'

Example
(ab|c){2} 	 'abab', 'abc', 'cab', 'cc' (ERE)

11

POSIX character classes
Within brackets [], we can use character classes corresponding to those in
ctype.h by surrounding the name with [: and :]

‣ alnum, digit, punct, alpha, graph, space, blank, lower, upper,
cntrl, print, xdigit

‣ E.g., [[:digit:][:space:]]

Shortcuts (needs "enhanced" regular expressions):

‣ \d is [[:digit:]] \D is [^[:digit:]]

‣ \s is [[:space:]]	 \S is [^[:space:]]

‣ \w is [[:alnum:]_] \W is [^[:alnum:]_]

12

Which string does the ERE 
 \([[:digit:]]{3}\) [[:digit:]]{3}-[[:digit:]]{4}  
match?

A. ([1]{3}) [2]{3}-[3]{4}

B. 123 456-7890

C. (123) 456-7890

D. \(123\) 456-7890

13

grep(1)
Name comes from ed(1) program command g/re/p

 grep –E re files	 use extended regex (or use egrep)

egrep –l re files	 just list file names

egrep –c re files	 just list count of matches

egrep –n re files	 just list line numbers

egrep –i re files	 ignore case

egrep –v re files	 show non-matching lines

14

awk(1)
Named after the developers

‣ A. Aho

‣ P. Weinberger

‣ B. Kernighan

Programming language for working on files

Consists of a sequence of pattern-action statements of the form

‣ pattern { action }

‣ Each line of the input is matched compared to each pattern in order;

each matching pattern has its associated action run

15

Running AWK
Running

‣ $ awk -f foo.awk files # foo.awk contains the program

‣ $ awk prog files # pattern-action separated by ;

Understands whitespace separated fields (can change this via -F option)

Awk programs can manipulate the fields with

‣ $1, $2, $3 are the first three fields

‣ $0 is the whole line

Other variables, just use their names

16

Patterns
/re/ matches the regular expression re

BEGIN	 matches before any input is used (can be used to set variables)

END	 	 matches after all input is used (e.g., can print things)

expr		 matches if the expression is nonzero

p1,p2 matches all lines between the line matching p1 and the line 
	 	 	 matching p2 (including those lines)

	 	 	 (empty pattern) matches every line

17

Expressions in patterns
Examples:

‣ $3 == "foo" { … }	 Matches when field 3 is the string foo

‣ $2 ~ /re/ { … }	 	 Matches when field 2 matches the regex re

You can use relational operators: <, <=, ==, !=, >, and >=

You can use match operators: expr ~ /re/ and expr !~ /re/

A bunch of builtin functions including substr, length, and sub (substitute)

The action(s) are performed when the pattern expression evaluates to true

18

Simple AWK program
Prints the lines of a file with START and END

19

BEGIN { print "START" }
 { print }
END { print "END"}

Actions
An action is a sequence of statements inside { } separated by ;
‣ assignment statements var = value

‣ conditionals/loops: if, while, for, do-while, break, continue,

‣ for (var in array) stmt

‣ print expr-list

‣ printf format, expr-list

A missing action means to print the line

20

Simple AWK program
Prints lines longer than 72 characters

Missing action block means print

21

length($0) > 72 { print }

length($0) > 72

Sum up a list of numbers

22

BEGIN { SUM = 0 }
 { SUM += $1 }
END { print "Total is", SUM }

$ cat nums
10
39
48
22
51
$ awk -f sum.awk nums
Total is 170

Print size and owner from ls -l

$ ls -l
total 64520
-rw-r--r-- 1 steve staff 2950132 Oct 20 14:04 Lecture-01-Introduction.key
-rw-r--r-- 1 steve staff 1882060 Sep 6 15:09 Lecture-02-Introduction-to-
Unix.key
-rw-r--r-- 1 steve staff 1208263 Sep 11 14:50 Lecture-03-More-shell.key
-rw-r--r-- 1 steve staff 1775407 Sep 13 15:18 Lecture-04-Environment-
expansion.key
…

$ ls -l | awk '{ print $5, "\t", $3 }'
2950132 steve
1882060 steve
1208263 steve
1775407 steve

23

$ ls -l | awk '{ print $5, "\t", $3 }'

Given pop.txt with lines containing zip code, county, population, e.g., 
44001 Lorain 20769  
44011 Lorain 21193  
what is the awk command to print out the population of Oberlin (zip code
44074)?

A. $ awk '/44074/ { print $3 }'

B. $ awk '$0 == 44074 { print $2 }'

C. $ awk '$1 == 44074 { print $3 }'

D. $ awk '44074 { print $2 }'

24

