
CS 241: Systems Programming
Lecture 24. Closures

Fall 2023

Prof. Stephen Checkoway

1

Motivating example
You have a slice of i32 and you want to find the first element that’s even

fn find_even(v: &[i32]) -> Option<i32> {
 for &num in v {
 if num % 2 == 0 {
 return Some(num)
 }
 }
 None
}

2

Motivating example 2
You have a slice of &str and you want to find the first element that starts with
the letter T

fn find_starts_with_t<'a>(v: &[&'a str]) -> Option<&'a str> {
 for &s in v {
 if s.starts_with('T') {
 return Some(s);
 }
 }
 None
}

3

Basically the same function!
fn find_xxx(v: &[SomeType]) -> Option<SomeType> {
 for x in v {
 if XXX {
 return Some(x);
 }
 }
 None
}

We can make this generic if we can come up with some way to abstract the
XXX

4

Using a predicate
We can make the function generic by taking a predicate as an argument

fn find_pred<T: Clone>(v: &[T], f: fn(&T) -> bool) -> Option<T> {
 for x in v {
 if f(x) {
 return Some(x.clone())
 }
 }
 None
}

Note that the .clone() method was added and a Clone trait bound 

fn(&T) -> bool is the type of a function taking &T and returning a bool
(a predicate)

5

fn is_even(x: &i32) -> bool {
 x % 2 == 0
}

fn starts_with_t(s: &&str) -> bool {
 s.starts_with('T')
}

fn main() {
 let v = vec![1, 2, 3, 4, 5];
 println!("{:?}", find_pred(&v, is_even));

 let s = vec!["Alpha", "Tau", "Delta"];
 println!("{:?}", find_pred(&s, starts_with_t));
}
Output:
Some(2)
Some(“Tau")

6

Think about the find_pred() function just discussed 
fn find_pred<T: Clone>(v: &[T], f: fn(&T) -> bool) -> Option<T>  
 
Think of some advantages to using find_pred() vs. writing individual
functions to find different items in slices for different predicates and types of
elements

Think of some limitations. What happens if you want to find the first element
greater than some variable?

A. Choose A

E. Or E, if you’d prefer

7

Limited to pre-defined functions
let minimum = 3;
fn pred(x: &i32) -> bool {
 *x > minimum
}
println!("{:?}", find_pred(&v, pred));
error[E0434]: can't capture dynamic environment in a fn item
 --> closures.rs:117:14
 |
117 | *x > minimum
 | ^^^^^^^
 |
 = help: use the `|| { ... }` closure form instead

8

Closures
Closures are anonymous functions

fn main() {
 let f = || {
 println!("Anonymous closure 0");
 };
 let g = |x| {
 println!("Anonymous closure 1");
 3 * x
 };
 f(); // Calls closure bound to f
 let y = g(23); // Calls closure bound to g
 println!("{y}");
}

9

Anonymous closure 0
Anonymous closure 1
69

Using functions
We can also define functions inside of functions

fn main() {
 fn f() {
 println!("Named function f");
 }
 fn g(x: i32) -> i32 {
 println!("Named function g");
 3 * x
 }
 f();
 let y = g(23);
 println!("{y}");
}

10

Named function f
Named function g
69

Closures with/without types/braces
Closures can (and sometimes need) type annotations

Single-expression closures can omit the braces

Compare

fn add_one_v1 (x: u32) -> u32 { x + 1 }
let add_one_v2 = |x: u32| -> u32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

11

Which of the following is a valid closure of two arguments, x and y, that
multiplies x by y+1?

A. || x * (y + 1)

B. |x, y| x * (y + 1)

C. |x, y| { x * (y + 1) }

D. All of the above

E. B and C

12

Let’s follow the help suggestion
let minimum = 3;
fn pred(x: &i32) -> bool {
 *x >= minimum
}
println!("{:?}", find_pred(&v, pred));
error[E0434]: can't capture dynamic environment in a fn item
 --> closures.rs:117:15
 |
117 | *x >= minimum
 | ^^^^^^^
 |
 = help: use the `|| { ... }` closure form instead

13

Another error???
let minimum = 3;
println!("{:?}", find_pred(&v, |x| *x > minimum));

error[E0308]: mismatched types
 --> closures.rs:116:32
 |
116 | println!("{:?}", find_pred(&v, |x| *x > minimum));
 | --------- ^^^^^^^^^^^^^^^^ expected fn
pointer, found closure
 | |
 | arguments to this function are incorrect

14

Closures vs. anonymous functions
Closures are anonymous functions that capture their environment
‣ They can access variables defined outside the closure itself

You can think of closures as

‣ A pointer to a function; plus

‣ Additional data (or references data) 

let minimum = 3;
let pred = |x: &i32| *x > 3;
println!("{}", pred(&10));

15

Another example
fn main() {
 let thing = String::from("Thing");
 let f = |s| println!("{thing} {s}");

 f(1);
 f(2);
}

Note that f contains a

reference to thing

16
https://seuss.fandom.com/wiki/Thing_One_and_Thing_Two?file=Thing1-and-thing2.jpg

Closures implement some traits

17

Closures implement some traits
FnOnce is the trait implemented by every closure

‣ It says that the closure may be called at least one time

‣ If this is the only trait implemented by the closure, then the closure may

be called exactly one time

17

Closures implement some traits
FnOnce is the trait implemented by every closure

‣ It says that the closure may be called at least one time

‣ If this is the only trait implemented by the closure, then the closure may

be called exactly one time

FnMut is the trait implemented by closures that mutate their environment via
mutable reference

‣ Such a closure can be called multiple times

‣ Any closure implementing FnMut also implements FnOnce

17

Closures implement some traits
FnOnce is the trait implemented by every closure

‣ It says that the closure may be called at least one time

‣ If this is the only trait implemented by the closure, then the closure may

be called exactly one time

FnMut is the trait implemented by closures that mutate their environment via
mutable reference

‣ Such a closure can be called multiple times

‣ Any closure implementing FnMut also implements FnOnce

Fn is the trait implemented by closures that only access their environment
via shared reference

‣ Such a closure can be called multiple times

‣ Any closure implementing Fn also implements FnMut and FnOnce17

Rust infers the appropriate trait based on what the
closure does with the captured variables

18

.into_iter() consumes v and thus
f can only be called once

Output:
15
A string
abcmodified

Rust infers the appropriate trait

19

f owns v

g has a shared reference to s

h has a mutable reference to t

Forcing a closure to own the values it references:
the move keyword
Using move before a closure forces the closure to take ownership of the
values it uses from its environment by moving the values into the closure

It does not change which traits are implemented

‣ Traits are determined by what the closure does

20

Fn vs. fn
fn find_pred<T: Clone>(v: &[T], f: fn(&T) -> bool) -> Option<T>

The f parameter is a function pointer type
‣ We can pass it functions defined via fn foo() …

‣ We can also pass it closures that do not access their environment

Fn(&T) -> bool is a trait implemented by closures (and functions) that
take a reference to T as an argument and return a bool

21

Generic
fn find_pred<T, F>(v: &[T], f: F) -> Option<T>
where
 T: Clone,
 F: Fn(&T) -> bool,
{
 for x in v {
 if f(x) {
 return Some(x.clone());
 }
 }
 None
}

Note how the where clause lets us more clearly write trait bounds

22

Using find_pred()
let v = vec![1, 2, 3, 4, 5];
let s = vec!["Alpha", "Tau", "Delta"];
let minimum = 3;

println!("{:?}", find_pred(&v, |x| *x % 2 == 0));
println!("{:?}", find_pred(&s, |x| x.starts_with('T')));
println!("{:?}", find_pred(&v, |x| *x >= minimum));

Output:
Some(2)
Some("Tau")
Some(3)

23

Fn(&T) -> bool was overly restrictive
Fn(&T) -> bool is too restrictive

‣ It doesn’t allow the closure to modify the environment

We can replace Fn(&T) -> bool with FnMut(&T) -> bool

‣ Since every closure that implements Fn implements FnMut, this is

allowing strictly more closures to work with our function

‣ In particular, we can now modify variables in the environment

24

Fn -> FnMut
fn find_pred<T, F>(v: &[T], mut f: F) -> Option<T>
where
 T: Clone,
 F: FnMut(&T) -> bool,
{
 for x in v {
 if f(x) {
 return Some(x.clone());
 }
 }
 None
}

25

FnMut rather than Fn

Needs to be mutable

Making use of mutability
let mut v2 = Vec::new();

let x = find_pred(&v, |x| {
 if *x < minimum {
 v2.push(*x);
 false
 } else {
 true
 }
});
println!("v2: {v2:?}");
println!("x: {x:?}");

26

Output:
v2: [1, 2]
x: Some(3)

Advice
When designing an interface that takes a closure, use trait with the least
functionality required

‣ If the closure will be called at most one time, use FnOnce

‣ If the closure will be called multiple times, use FnMut

‣ If the closure will be called multiple times but you don’t want any

modifications, or modifications aren’t possible, use Fn

Or, start with FnOnce and if the compiler complains you need to use one of
the others, use that one

27

Closures in the standard library
The Rust standard library exposes a bunch of functionality like our
find_pred() by providing methods for iterators that take closures

Some return other iterators, others return a value

Let’s look at some common examples

‣ .find()/.rfind()
‣ .position()/.rposition()
‣ .map()
‣ .filter()
‣ .take_while/.skip_while

28

Find
let v = vec![1, 2, 3, 4];
println!("{:?}", v.iter().find(|x| **x > 3));

Output: Some(4)

.find() works like our find_pred(): it takes a 1-argument predicate and returns
the first element that satisfies the predicate

.rfind() works similarly, but starts from the other end

29

Types are a little wonky
Setup:

‣ If it is an Iterator that produces items of type T, then 
it.find(f) requires f to be a closure that takes a &T argument and
returns a bool

‣ A Vec::<T>’s .iter() method returns an iterator that produces items
of type &T

Together:

v.iter().find(f) requires f to be a closure that takes a &&T argument
and returns a bool

Hence the ** in: v.iter().find(|x| **x > 3)

30

Position
.position() and .rposition() work similarly to .find() and .rfind() except they
return the index rather than the element 

let v = vec!["Hello", "Hola", "สวัสด"ี, "مرحبًا"];
let idx = v.iter()
 .position(|s| !s.is_ascii())
 .unwrap();
println!("Element {idx}: {}", v[idx]);

Output: Element 2: สวัสดี

31

Iterators have a .map(f) method that works by calling f on each element
being iterated over and returning the result of f rather than the element.

In other words, if the iterator it produces elements of type T, then
it.map(f) returns an iterator that produces elements of type U where f
takes an argument of type T and returns type U.

If v is a Vec::<i32>, which call to .map() returns an iterator over
numbers that are twice as large as the numbers in v?

// A
v.iter().map(|x| 2 * x);

// B
v.iter().map(|x| 2 * *x);

// C
v.iter().map(|x| 2 * **x);

// D. More than one of the
above (which ones?)

32

Map
let v = vec![1, 2, 3, 4];
let v2: Vec<_> = v.iter().map(|x| 2 * x).collect();
println!("{v2:?}");

Output: [2, 4, 6, 8]

.map() takes a 1-argument closure f and returns an iterator that applies f to
each element the iterator produces

33

Filtering an iterator
Iterators have a .filter() method that takes a closure (or a function) as an argument
and returns a new iterator containing the elements for which the closure returns
true

fn main() {
 let v = vec![1, -4, 3, 8, 2, -21, 6, -2, 9];

 println!("Positive numbers:");
 for num in v.iter().filter(|x| **x > 0) {
 println!(" {num}");
 }
 println!("Multiples of 3:");
 for num in v.iter().filter(|x| **x % 3 == 0) {
 println!(" {num}");
 }
}

34

Positive numbers:
 1
 3
 8
 2
 6
 9
Multiples of 3:
 3
 -21
 6
 9

Take/skip while
.take_while() works by returning (“taking”) each element from the iterator so long
as the predicate evaluates to true

.skip_while() works similarly, except it skips the elements as long as the predicate
returns true

let v = vec![1, 2, -3, 4, -8, 1, 0];
let v2: Vec<_> = v.iter().take_while(|x| **x > -1).collect();
let v3: Vec<_> = v.iter().skip_while(|x| **x > -1).collect();
let v4: Vec<_> = v.iter().filter(|x| **x > -1).collect();

println!("v2: {v2:?}");
println!("v3: {v3:?}");
println!("v4: {v4:?}");

35

v2: [1, 2]
v3: [-3, 4, -8, 1, 0]
v4: [1, 2, 4, 1, 0]

