
CS 241: Systems Programming
Lecture 22. Signals

Fall 2023

Prof. Stephen Checkoway

1

How does a process request that the kernel perform an action on the
process’s behalf?

A. It calls a function in the kernel

B. It calls a function in libc

C. It makes a system call

D. It makes a hypervisor call

E. It changes switches the processor into kernel mode and then performs
the action

2

Signals
Signals are a mechanism for the kernel to inform a process that some event
has occurred

‣ A single bit of information: event X occurred (possibly multiple times!)

System calls are for process -> kernel communication

Signals are for (extremely limited) kernel -> process communication

3

Common signals: signal(7)
SIGINT 		 — Interrupt from keyboard (ctrl-C on the terminal)

SIGQUIT	 — Quit from keyboard (ctrl-\ on the terminal)

SIGILL	 	 — Illegal instruction

SIGABRT	 — Signal from abort() (or assert() which calls abort())

SIGFPE	 	 — Floating point exception; integer divide by 0 on some systems

SIGKILL	 — Kill signal, cannot be handled or ignored

SIGSEGV	 — Segmentation fault

SIGPIPE	 — Write to pipe with no readers

SIGTERM	 — Termination signal

SIGCHLD	 — Child stopped or terminated

SIGSTOP	 — Suspend the process (ctrl-Z on the terminal)

SIGCONT	 — Resume the process (fg or bg on terminal)

SIGWINCH	 — Terminal window resized

4

Similar sounding signals
SIGINT 		 — Interrupt from keyboard (ctrl-C on the terminal)

SIGQUIT	 — Quit from keyboard (ctrl-\ on the terminal)

SIGKILL	 — Kill signal, cannot be handled or ignored

SIGTERM	 — Termination signal

SIGSTOP	 — Suspend the process (ctrl-Z on the terminal)

SIGINT and SIGQUIT should only come from the user typing at the terminal

If one process wants to stop another, it should (typically) request the process
terminate via SIGTERM and, if after a few seconds it hasn't, use SIGKILL

SIGSTOP is about job control, not about terminating processes

5

Signal workflow

6

Request from
process

Event occurs

Signal
generation

Signal
delivery

Handler

Default
action

Ignore

Signal Disposition

Event or request
Some event occurs

‣ Ctrl-C, or a child process exits or …

A process requests a signal be sent to itself or another process

‣ The kill system call specifies a signal to send

7

Signal generation
The kernel maps the event/request to a signal number

The kernel sets a bit indicating the particular signal is pending (meaning it
will be delivered) for the target process

8

Signal delivery
Before returning to a user process after a system call or context switch, the
kernel checks the set of pending signals and the set of signals the process is
blocking

If a pending signal is not blocked, signal delivery occurs

Action taken depends on the signal disposition

‣ If a signal handler has been registered, it is called by the kernel in the

context of the process

‣ If the particular signal is ignored, nothing happens

‣ Otherwise the default action occurs

Default action

‣ Some signals are ignored (like SIGCHLD)

‣ Some cause the process to be terminated (like SIGINT)9

Signal handlers
Signal handlers are just functions that are called asynchronously in response
to a signal

Signal handlers run in the context of the process and have access to all of
the process’s memory

Signal handlers are extremely limited in what they can safely do

10

Blocked signals
Processes can request that delivery of particular signals be blocked

When a blocked signal is generated, it remains pending until the signal is
unblocked

‣ When a signal is unblocked and is pending, it is delivered immediately

Typically, a process will block signals for a short period of time and then
unblock

If a process never wants to receive a signal, it can set the signal’s disposition
to ignored

11

Signal delivery delay
Signal delivery is deferred until the kernel next returns to the process

‣ At the completion of a system call

‣ The next time the process is scheduled to run

Some system calls can be interrupted, others cannot

‣ System calls like read(2) and write(2) can read/write less than requested

when interrupted by a signal; return value reflects this

‣ Other calls may return -1 and set errno to EINTR to indicate it was

interrupted

Only one of each (standard) signal may be pending at a time

12

A. The handler never runs

B. The handler runs the first time ctrl-c is pressed

C. The handler runs both times ctrl-c is pressed

D. The handler runs once after the signal is unmasked

E. The handler runs twice after the signal is unmasked
13

Consider the following sequence of events

‣ The process installs a signal handler for SIGINT

‣ The process masks (blocks) SIGINT

‣ The user presses ctrl-c twice

‣ The process unmasks (unblocks) SIGINT

Which of the following is correct?

Sending a signal
From the shell: kill(1) or killall(1)
‣ $ kill -9 1234 # Send SIGKILL (signal 9) to PID 1234
‣ $ kill -l # List all of the signals

int kill(pid_t pid, int sig);
‣ Sends signal sig to process pid

‣ Different behavior depending on pid < 0, pid = 0, pid > 0, sig = 0, sig > 0

int raise(int sig);
‣ Sends signal sig to the own process

14

Setting a handler
Use sigaction(2)

‣ Takes a const pointer to a struct that holds a new handler and flags

‣ Takes a pointer to a struct that will be filled in with the old handler and

flags

‣ flags specify the behavior of interrupted system calls, what information

is given to the signal handler, and whether the same signal can be
received while its handler is running

‣ Read the man page!

15

Blocking signals
Signal masks (which indicate which signals are blocked) can be manipulated
with sigprocmask(2)

16

Signal handler limitations
Signal handlers run asynchronously compared to the rest of the code

There is a real danger of a signal handler modifying data that the main
program is currently accessing

‣ This is undefined behavior

Signal handlers have extreme limitations:

‣ No allocating memory

‣ A very restricted set of system calls are allowed

‣ No touching data other code can use nonatomically

17

“Safe” signal handlers
The only really safe signal handler (this is a slight overstatement) is one that atomically sets a bool

Pseudo code:

received_signal = false

fn handler():
 atomically set received_signal = true

fn main():
 register handler as signal handler for SIGINT
 loop:
 let input = read_from_stdin()
 interrupted = atomically read received_signal and set it to false
 if interrupted:
 handle the Ctrl-C

18

Nonatomic operations
Consider the code like x = x + 1;

The processor has to perform three concrete actions

‣ Load the current value of x from memory

‣ Add 1 to that value

‣ Store the new value of x back into memory

This process is not atomic
‣ E.g., the process could be interrupted by a signal after loading x from

memory but before storing the new value back, if the signal handler
modified x, then its modification would be overwritten once the main
code is running again

19

Signal handlers can be interrupted by signals which means that the signal
handler can be run in response to a signal while it is already running!

Does the following pseudocode for a signal handler that counts how many
times the handler is called work correctly? Why or why not?

 
count = 0
fn handler():  
 count += 1

A. Yes

B. No

C. It depends

20

Atomic operations
Modern processors all have support for performing atomic operations on
basic types like bools and integers

Programming languages have varying levels of support for atomics (C only
added support in 2011!)

Rust has fantastic support for atomic operations

21

AtomicBool
use std::sync::atomic::{AtomicBool, Ordering};

// Create a new AtomicBool initially set to false.
let val = AtomicBool::new(false);

// Atomically sets val to true
val.store(true, Ordering::Relaxed);

// Atomically loads val; assigns the result to x.
let x = val.load(Ordering::Relaxed);

// Atomically sets val to false and returns the old value of val
let old = val.swap(false, Ordering::Relaxed);

22

Not mutable!
use std::sync::atomic::{AtomicBool, Ordering};

// Create a new AtomicBool initially set to false.
let val = AtomicBool::new(false);

// Atomically sets val to true
val.store(true, Ordering::Relaxed);

// Atomically loads val; assigns the result to x.
let x = val.load(Ordering::Relaxed);

// Atomically sets val to false and returns the old value of val
let old = val.swap(false, Ordering::Relaxed);

23

val isn’t mutable

This modifies it!

As does this!

Mutating nonmutable data
Since every operation on an AtomicBool is atomic, it’s safe to let multiple
pieces of code operate on it simultaneously

Put another way, modification through shared references is safe

Consequence: We can use global, nonmutable atomic variables and modify
the values, e.g., from a signal handler

24

Ordering
Each of the .store(), .load(), and .swap() methods take an Ordering enum

The Ordering variant used dictates how the hardware relates the atomic
operation with other memory reads (loads) and writes (stores)

This isn’t relevant for our use case so we always use Ordering::Relaxed

25

Signal handling in Rust
1. Create a global AtomicBool variable for each signal of interest

2. Create a signal handler function that sets the appropriate AtomicBool for
the received signal and does nothing else

3. Use libc::sigaction() to register the signal handler

26

The AtomicBool and handler
use std::sync::atomic::{AtomicBool, Ordering};

static INTERRUPTED: AtomicBool = AtomicBool::new(false);

extern "C" fn handler(_sig: libc::c_int) {
 INTERRUPTED.store(true, Ordering::Relaxed);
}

27

extern “C” tells rustc to compile the
function in the manner expected by C

code since that’s what the kernel
expects too

Setting the signal handler
unsafe {
 let action = libc::sigaction {
 sa_sigaction: handler as libc::sighandler_t,
 ..std::mem::zeroed()
 };

 if libc::sigaction(libc::SIGINT, &action, std::ptr::null_mut()) < 0 {
 return Err(io::Error::last_os_error());
 }
}

28

Set the sa_sigaction field to handler (cast to a sighandler_t)

Set the rest of the fields to zero

Call sigaction(), passing the action structure and check the
return value

Changing the signal disposition
In general, we call sigaction() to change the signal disposition to one of

‣ Call a handler

‣ Ignore the signal

‣ Perform the default action

unsafe {
 let action = libc::sigaction {
 sa_sigaction: libc::SIG_IGN,
 ..std::mem::zeroed()
 };

 if libc::sigaction(libc::SIGINT, &action, std::ptr::null_mut()) < 0 {
 return Err(io::Error::last_os_error());
 }
}

29

Sets the disposition to ignored

Use SIG_DFL to set the disposition to the default action

