
CS 241: Systems Programming
Lecture 18. System Calls I

Fall 2023

Prof. Stephen Checkoway

1

What is an operating system?

2

Operating system tasks
Managing the resources of a computer

‣ CPU, memory, network, etc.

Coordinate the running of all other programs

OS can be considered as a set of programs

‣ kernel – name given to the core OS program

3

https://en.wikipedia.org

User mode

Kernel mode

Hardware

Applications request
the kernel perform an
action on their behalf

using system calls

Do we need an operating system?

A. Yes

B. No

C. I don't know/I'm not sure

5

System calls
Programs talk to the OS via system calls

‣ Set of functions to request access to resources of the machine

‣ System calls vary by operating system and computer architecture

Types of system calls

‣ Input/output (may be terminal, network, or file I/O)

‣ File system manipulation (e.g., creating/deleting files/directories)

‣ Process control (e.g., process creation/termination)

‣ Resource allocation (e.g., memory)

‣ Device management (e.g., talking to USB devices)

‣ Inter-process communication (e.g., pipes and sockets)

‣ …

6

Most basic UNIX system call: exit
Programs (normally) end by calling exit() or returning from main()…
which calls exit()

The exit system call takes an exit status as its only parameter

When the kernel receives an exit system call from a program, it

‣ cleans up all of the resources associated with the program

‣ notifies the program that created the exiting program (the parent) that a

child has exited

7

System calls as API
System calls are an example of an application programming interface (API)

‣ Each system call is assigned a small integer (the system call number)

‣ System calls are performed by setting up the arguments (often in

registers) and using a dedicated "system call" or "interrupt" instruction

‣ The kernel's system call handler calls an appropriate function based on

the system call number

‣ Data (and success/failure) is returned to the application

8

http://www.linux.it/~rubini/docs/ksys/

System calls and libc
C standard library

‣ Some functions make no system calls (e.g., strcpy(3))

‣ Some functions "wrap" a single system call (e.g., open(2))

‣ Some functions have complex behavior and might make a variable

number of system calls (e.g., malloc(3))

We're going to focus on the libc wrappers for the system calls

‣ These live in section 2 of the manual: open(2), _exit(2), fork(2)

10

System calls and Rust
OS vendors make changes to their system calls over time

Different computer architectures use different system call numbers

To deal with this, the system call interface lives in libc:

‣ To make a system call, applications call functions in libc

‣ libc places the system call number and arguments in the correct

registers and traps into the kernel

In Rust, we have two options

1. Use higher-level functionality provided by the standard library

2. Call functions in libc

11

Unsafe Rust

12

Rust lets you be unsafe
Rust has an unsafe keyword that lets you perform unsafe operations

‣ Call functions marked as unsafe (including everything in the libc)

‣ Dereference raw pointers (we’ll talk about these shortly)

‣ Modify a mutable global variable

‣ Implement an unsafe trait (we’ll talk about traits in a few lectures)

‣ Access fields of a C-style union

To make system calls, we’ll need unsafe for the first two

13

The purpose of unsafe
The compiler (and language) is conservatively correct

It ensures that the programs (that don’t use unsafe) are memory safe

It rejects programs that are safe due to its inability to prove them safe

unsafe provides a way to bypass those limitations

unsafe limits the scope of where memory errors can occur to precisely those
regions of the code marked unsafe

14

Unsafe functions/methods
Functions and methods can be marked as unsafe by using the unsafe
keyword

Unsafe functions can only be called from within an unsafe block (or unsafe
function)

unsafe fn does_unsafe_things() -> i32 { 0 }

fn main() {
 let x = unsafe {
 does_unsafe_things()
 };
 println!("{x}");
}

15

Functions in other languages
Rust can call functions in other languages (usually C functions)

All such external functions are unsafe and can only be called from unsafe
blocks

16

Why did the Rust designers require that functions written in other languages
be called from an unsafe block?

A. Select A when you have an answer

17

Raw pointers
We’ve seen pointers in Rust

‣ Shared references (e.g., &i32)

‣ Mutable references (e.g., &mut i32)

‣ Boxes

‣ Slices

Rust has two additional pointer types

‣ Constant pointer (e.g., *const i32)

‣ Mutable pointer (e.g., *mut i32)

18

Pointers
Pointers are like their reference counterparts but without some restrictions

References must always point to valid, aligned objects of the appropriate
type

Additionally, mutable references may not be aliased

Pointers may be invalid (including null) or point to a misaligned object

Mutable pointers may alias

19

Alignment
Alignment of a value refers to its address in memory

An aligned value is one whose address is a multiple of its size in bytes (at least
for primitive types like i32 or usize, structs are aligned at the alignment of their
largest member)

A misaligned value is one whose address is not a multiple of its size (or its
largest member)

Rust (and most programming languages) require values be aligned

This restriction comes from hardware which often doesn’t support misaligned
memory reads/writes or performs them more slowly

20

Creating a pointer from a reference
fn pointer_stuff(ptr: *const i32) { }

fn main() {
 let x = 10;

 // Cast the reference to a pointer
 let p = &x as *const i32;
 pointer_stuff(p);

 // Implicit conversion
 pointer_stuff(&x);
}

21

Creating a mutable pointer
fn pointer_stuff(ptr: *const i32) { }

fn main() {
 let mut x = 10;

 // Cast the mutable reference to a mutable pointer
 let p = &mut x as *mut i32;
 // Implicit conversion from *mut i32 to *const i32
 pointer_stuff(p);

 // Implicit conversion from &mut i32 to *const i32
 pointer_stuff(&mut x);
}

22

Reading or writing values
The reason one wants to create a pointer is to read or write the memory it points to

fn main() {
 let mut x = 10;
 let mut y = 20;
 let x_ptr = &mut x as *mut _;
 let y_ptr = &mut y as *mut _;

 println!("Before: x={x} y={y}");
 unsafe {
 let tmp = *x_ptr; // Read
 *x_ptr = *y_ptr; // Read + write
 *y_ptr = tmp; // Write
 }
 println!("After: x={x} y={y}");
}

23

Output:
Before: x=10 y=20
After: x=20 y=10

The _ causes the compiler to
use type inference to determine
the type, in this case: *mut i32

Pointer from a slice (or Vec or String)
let v: Vec<char> = vec!['🥸'; 1000];
let p: *const char = v.as_ptr();

let s = String::from("Pointers!");
let p: *const u8 = s.as_ptr();

Gives a pointer to the first element of the slice

Use .as_mut_ptr() to get a *mut _ rather than *const _

24

Strings hold their characters
UTF-8 encoded in a Vec<u8>

Is the .as_ptr() method necessary or can we just cast the reference? 

let s = String::from("Pointers!");
let p = &s as *const u8;

A. .as_ptr() is necessary

B. Casting the reference also works

C. .as_ptr() is necessary for a String but casting would work for a Vec

25

Creating pointers from other pointers

fn main() {
 let v = vec![4, 28, -47, 36, 0, 1, -8, 234,
 72, 9, 74, -9, 4, 2, 5, 8, 10];
 let p = v.as_ptr();

 unsafe {
 let q = p.offset(10);
 println!("*p = {}; *q = {}", *p, *q);
 }
}

26

4 28 -47 36 0 1 -8 234 72 9 74 -9 4 2 5 8 10

p q

Null pointers
Use std::ptr::null() and std::ptr::null_mut() to create 
*const _ or *mut _

Use .is_null() to test if a pointer is null 

let ptr: *mut i32 = std::ptr::null_mut();
println!("{}", ptr.is_null());

27

libc crate
The libc crate exposes libc functions/types/constants in Rust

28

System call wrapper in libc Rust declaration of the function Notes

void _exit(int status) fn _exit(status: c_int) -> ! Exit (doesn’t return)

pid_t getpid(void) fn getpid() -> pid_t Get the process ID

ssize_t read(int fildes, void *buf,
 size_t nbyte);

fn read(fd: c_int, buf: *mut c_void,
 count: size_t) -> ssize_t Read data from a file

int rename(const char *old,
 const char *new)

fn rename(oldname: *const c_char,
 newname: *const c_char)
-> c_int

Renames files

Types of arguments
Arguments to syscalls fall into a few basic types

29

C type Libc crate’s equivalent Normal Rust equivalent (on many
platforms) Notes

int c_int i32 Normal integer

size_t/ssize_t size_t/ssize_t usize/isize
Represents the size of things

ssize_t is used to return -1 as an
error

char * *const c_char
*mut c_char

&CStr
CString
*const i8/*mut i8

0-byte terminated string

void * *const c_void
*mut c_void A pointer to anything

Pointers to
structs

Pointers to structs
with the same name

References can be converted to
pointers

C strings
C considers a string to be a sequence of nonzero (often signed) bytes
followed by a byte with value 0

Here’s "Hello 😵💫” 

Rust considers a string to be a sequence of u8 of UTF-8 encoded characters
and an associated length

 
 len = 17

30

72 101 108 108 111 32 -16 -97 -104 -75 -30 -128 -115 -16 -97 -110 -85 0

72 101 108 108 111 32 240 159 152 181 226 128 141 240 159 146 171

There’s no difference between -16 and
240 other than interpretation. Both

have binary value 11110000

The kernel uses C strings
The kernel, being written in C, uses C strings

More importantly, the system call interface uses C strings

Converting between a C string and a Rust string isn’t difficult but can be
subtle

‣ Who owns the data?

‣ Is the string from the kernel valid UTF-8?

31

&CStr and CString
To pass a Rust string to the kernel, use std::ffi::CString

let cstr = CString::new(some_str)?;
let ptr = cstr.as_ptr();

To convert a C string into a Rust string, use std::ffi::CStr

let normal_str = CStr::from_ptr(ptr).to_str()?.to_string();

CString::new() will return an Err(err) if some_str contains a 0 byte

.to_str() will return an Err(err) if the CStr points to non UTF-8 data

32

use std::ffi::{CStr, CString};

type Result<T> = std::result::Result<T, Box<dyn std::error::Error>>;

fn get_home_dir_for_user(user: &str) -> Result<String> {
 let user = CString::new(user)?;
 unsafe {
 let pwd: *const libc::passwd = libc::getpwnam(user.as_ptr());

 if pwd.is_null() {
 return Err(std::io::Error::last_os_error().into());
 }
 if (*pwd).pw_dir.is_null() {
 return Err("No home directory found".into());
 }
 let home_dir = CStr::from_ptr((*pwd).pw_dir).to_str()?.to_string();
 Ok(home_dir)
 }
}

33

Errors
When a system call fails

‣ the C wrapper returns -1 (or NULL, in some cases)

‣ the per-thread global variable errno is set to an integer specifying the

reason

Rust’s std::io::last_os_error() reads errno and constructs a std::io::Error
which we can use with a Result

34

Why do we use system calls instead of making a function call directly to the
function in the kernel that will handle our system call request?

Discuss with your group and select A on your clickers when you have a
reason (or multiple reasons)

35

Input/output system calls

36

Open a file: open(2)
#include <fcntl.h>

int open(char const *path, int oflag, ...);
‣ O_RDONLY	 	 open for reading only

‣ O_WRONLY	 	 open for writing only

‣ O_RDWR	 	 	 open for reading and writing

‣ O_APPEND	 	 append on each write

‣ O_TRUNC	 	 truncate size to 0

‣ O_CREAT	 	 create file if it does not exist

‣ O_EXCL		 	 error if O_CREAT and the file exists

‣ O_NONBLOCK	 do not block on open or for data to become available

Last arg is the "int mode" -- see chmod(2) and umask(2)

Returns file descriptor on success, -1 on error37

… indicates 0 or more
additional arguments.

In this case, open() takes
exactly 2 or 3 arguments

Bitwise OR the flags together,
e.g.,

O_WRONLY | O_CREAT

File descriptors
Integer index into OS file table for this process

3 are automatically created for you

‣ STDIN_FILENO		 0	 standard input

‣ STDOUT_FILENO	 1	 standard output

‣ STDERR_FILENO	 2	 standard error

These are what are used in shell redirection

‣ $./a.out 2> errors.txt

38

Read data: read(2)
#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

‣ Attempts to read nbytes from filedes storing data in buf

‣ Returns the number of bytes read

‣ Upon EOF, returns 0

‣ Upon error, returns -1 and sets errno

39

Write data: write(2)
#include <unistd.h>

ssize_t write(int fildes, void const *buf, size_t nbyte);

‣ Attempts to write nbyte of data to the object referred to by filedes from

the buffer buf

‣ Upon success, returns number of bytes are written

‣ On error, returns -1 and sets errno

40

Seek in file: lseek(2)
#include <sys/types.h>  
#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

‣ whence is one of SEEK_SET, SEEK_CUR, SEEK_END
‣ On success, returns the resultant offset in terms of bytes from the

beginning of the file

‣ On error, returns (off_t)-1 and sets errno

41

Close files: close(2)
#include <unistd.h>

int close(int fildes);
‣ Closes fildes, returns 0 on success

‣ Returns -1 and sets errno on error

42

Reading a file with system calls
1. Open the file with libc::open() and handle errors

2. Reserve space in a Vec<u8>

3. Read some data with libc::read() and handle errors

4. If all of the data was not read, go back to step 2

5. Close the file with libc::close()

43

Opening the file
use std::ffi::CString;
use std::io;
fn read_file(path: &str) -> io::Result<Vec<u8>> {
 let path = CString::new(path)?;
 let mut data: Vec<u8> = Vec::new();

 unsafe {
 let fd = libc::open(path.as_ptr(), libc::O_RDONLY);
 if fd == -1 {
 return Err(io::Error::last_os_error());
 }
 // Read the data here
 libc::close(fd);
 }
 Ok(data)
}

44

Construct a 0-terminated
C string

Reserve space
fn read_file(path: &str) -> io::Result<Vec<u8>> {
 // …
 loop {
 if data.capacity() - data.len() < 4096 {
 data.reserve(4096);
 }
 // …
 }
 // …
 Ok(data)
}

45

Read some data
fn read_file(path: &str) -> io::Result<Vec<u8>> {
 // …
 loop {
 // …
 let ptr: *mut libc::c_void = data.as_mut_ptr()
 .offset(data.len() as isize)
 .cast();
 let amount = libc::read(fd, ptr, data.capacity() - data.len());
 if amount < 0 {
 let err = io::Error::last_os_error();
 libc::close(fd);
 return Err(err);
 }
 if amount == 0 {
 break;
 }
 data.set_len(data.len() + amount as usize);
 }
 // …
 Ok(data)
} 46

Easy to forget to close
the file!

fn read_file(path: &str) -> io::Result<Vec<u8>> {
 let path = CString::new(path)?;
 let mut data: Vec<u8> = Vec::new();

 unsafe {
 let fd = libc::open(path.as_ptr(), libc::O_RDONLY);
 if fd == -1 {
 return Err(io::Error::last_os_error());
 }
 loop {
 if data.capacity() - data.len() < 4096 {
 data.reserve(4096);
 }
 let ptr: *mut libc::c_void = data.as_mut_ptr().offset(data.len() as isize).cast();
 let amount = libc::read(fd, ptr, data.capacity() - data.len());
 if amount < 0 {
 let err = io::Error::last_os_error();
 libc::close(fd);
 return Err(err);
 }
 if amount == 0 {
 break;
 }
 data.set_len(data.len() + amount as usize);
 }
 libc::close(fd);
 }
 Ok(data)
} 47

Contrast with normal Rust
fn read_file(path: &str) -> io::Result<Vec<u8>> {
 use std::io::Read;
 let mut file = File::open(path)?;
 let mut data = Vec::new();
 file.read_to_end(&mut data)?;
 Ok(data)
}

48

open system call

1 or more read system
calls

close system call when
file is dropped

Or even easier
fn main() {
 let data1 = read_file("example.txt").unwrap();
 let data2 = std::fs::read("example.txt").unwrap();
 assert_eq!(data1, data2);
}

49

One function to call.
It’ll call open(), read(), and close()

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void *read_file(char const *path,
 size_t *len_ptr)
{
 int fd = open(path, O_RDONLY);
 if (fd == -1) {
 return NULL;
 }
 *len_ptr = 0;
 char *data = NULL;
 size_t len = 0;
 size_t cap = 0;
 while (1) {
 if (cap - len < 4096) {
 cap += 4096;
 char *new_data = realloc(data,
 cap);
 if (new_data == NULL) {
 int old_errno = errno;
 free(data);
 close(fd);

 errno = old_errno;
 return NULL;
 }
 data = new_data;
 }
 ssize_t amount = read(fd,
 &data[len],
 cap - len);
 if (amount < 0) {
 int old_errno = errno;
 free(data);
 close(fd);
 errno = old_errno;
 return NULL;
 }
 if (amount == 0) {
 break;
 }
 len += amount;
 }
 close(fd);
 *len_ptr = len;
 return data;
}

50

File system manipulation
system calls

51

Delete files: unlink(2)
#include <unistd.h>

int unlink(char const *path);
‣ Removes path, returns 0 on success

‣ Returns -1 and sets errno on error

52

Rename files: rename(2)
#include <stdio.h>

int rename(char const *oldpath, char const *newpath);
‣ Renames oldpath to newpath, returns 0 on success

‣ Returns -1 and sets errno on error

‣ This can change directories, but not file systems!

53

Get current directory: getcwd(3)
#include <unistd.h>

char *getcwd(char *buf, size_t size);

‣ Copies absolute path of current working directory to buf

• length of array is "size"

• if path is too long (including null byte), NULL/ERANGE

‣ Linux allows NULL for buf for dynamic allocation, see man page

Basically just a wrapper around the getcwd system call plus some memory
allocations

54

Change directories: chdir(2)
#include <unistd.h>

int chdir(const char *path);  
int fchdir(int fildes);

Change working directory of calling process

‣ How "cd" is implemented

‣ fchdir() is only in certain standards, but widely available

‣ fchdir() lets you return to a directory referenced by a file descriptor

from open(2)ing a directory

0 on success, -1/errno on error

55

Create/delete a directory
#include <sys/stat.h>  
#include <sys/types.h>

int mkdir(char const *path, mode_t mode);

‣ Create a directory called path

‣ Don't forget execute bits in mode!

#include <unistd.h>

int rmdir(char const *path);

‣ Delete the directory specified by path

0 for success, -1/errno on error
56

Reading directories
opendir(3), readdir(3), closedir(3)
‣ Enables the application to read the contents of directories

These are actually just higher-level wrappers around open(2), getdirents(2),
and close(2) which are themselves wrappers around the corresponding
system calls

57

Libc crate and normal Rust
The libc crate declares all of these functions

The std::fs module has Rust-versions

‣ remove_file() for unlink(2)

‣ rename()

‣ create_dir() for mkdir(2)

‣ remove_dir() for rmdir(2)

‣ read_dir() for opening, reading, and closing directories

The std::env module has some other related functions

‣ current_dir() for getcwd(2)

‣ set_current_dir() for chdir(2)

58

