
CS 241: Systems Programming
Lecture 17. Modules

Fall 2023

Prof. Stephen Checkoway

1

Packages and crates and modules, oh my!
Rust code is organized into packages, crates, and modules

Packages are the largest* unit of organizing code

‣ Created with cargo new or cargo init

‣ Composed of crates

‣ At most one library crate (src/lib.rs)

‣ Zero or more binary crates (src/main.rs or src/bin/*.rs)

* Technically, there are also workspaces composed of multiple packages

2

http://lib.rs
http://main.rs

Crates
The smallest unit of code compiled by rustc

‣ Each crate has a “root”

• src/lib.rs for library crates in packages

• src/main.rs or src/bin/*.rs for binary crates in packages

• the file you pass to rustc when compiling by hand rather than cargo

‣ Crates form a tree of modules starting at the root

‣ Crates may depend on library crates

• E.g., rand, clap, and colored

Rust developers usually mean a library crate when they say crate

https://crates.io is the central repository of crates

3

http://lib.rs
http://main.rs
https://crates.io

Modules
Crates are composed of modules

Two types of modules

‣ Inline modules

‣ File modules (I don’t know if these have a real name)

Modules form a tree whereby modules may contain submodules

4

Inline modules
A module defined inside another module (or the crate root) using mod { }

mod foo {
 struct SomeType {
 // ...
 }

 fn bar() {
 println!("Function bar() in module foo")
 }
}

5

Test modules
The most common use for an inline module is unit tests

#[cfg(test)]
mod test {
 #[test]
 fn test_something() { }
}

The #[cfg(test)] annotation tells the compiler that the test module should not
be compiled unless it is compiling unit tests (e.g., via cargo test)

The #[test] annotation on a function indicates it is a unit test

6

Most modules are files
Declare a module foo with

mod foo;

Where the code for foo lives depends on if this module is declared in the
crate root (lib.rs/main.rs) or in a module

7

http://lib.rs/main.rs

Modules declared in the crate root
// main.rs
mod process;

fn main() {
 let proc = process::Process::new();
 println!("{proc:?}");
}

src
├── main.rs
└── process.rs

// process.rs
#[derive(Debug)]
pub struct Process {
 // ...
}

impl Process {
 pub fn new() -> Self {
 Self {
 // ...
 }
 }
}

8

Same directory as
main.rs

Submodules
// main.rs
mod process;

fn main() {
 let proc = process::Process::new();
 println!("{proc:?}");
}

// process.rs
mod state;

#[derive(Debug)]
pub struct Process {
 // ...
}

// ...

// state.rs
pub enum ProcessState {
 Running,
 Runnable,
 // ...
}

src
├── main.rs
├── process
│ └── state.rs
└── process.rs

9

Inside a directory
named with the

containing module
name

http://process.rs
http://process.rs

Imagine we have a Rust library crate structured as multiple modules/
submodules. Here’s the src directory.

src
├── foo
│ ├── bar
│ │ └── inner.rs
│ ├── bar.rs
│ └── ex.rs
├── foo.rs
└── lib.rs

How many “file modules” are there (including submodules)?
A. 2

B. 3

C. 4

D. 5

10

Imagine we have a Rust library crate structured as multiple modules/
submodules. Here’s the src directory.

src
├── foo
│ ├── bar
│ │ └── inner.rs
│ ├── bar.rs
│ └── ex.rs
├── foo.rs
└── lib.rs

Which file contains the line: mod bar;
A. bar.rs

B. ex.rs

C. foo.rs

D. inner.rs

E. lib.rs

11

http://bar.rs
http://ex.rs
http://foo.rs
http://inner.rs
http://lib.rs

Modules form a tree
Imagine each of main.rs, process.rs, and state.rs contained inline test
modules for their unit tests

Module tree File system

crate
├── process
│ ├── state
│ │ └── test
│ └── test
└── test

12

src
├── main.rs
├── process
│ └── state.rs
└── process.rs

http://process.rs

Paths to items in modules
We name items (types, functions, etc.) in a module by giving a path to the
item

‣ crate::process::Process
‣ crate::process::state::ProcessState

crate refers to the current crate

To name an item in a different crate, we start with the name of the crate

‣ std::collections::HashMap
‣ std::io::BufRead
‣ rand::random()

13

Absolute vs. relative paths
Inside the same crate, we can refer to items via relative paths

Example: inside the process module, we can use state::ProcessState
to mean the same item as crate::process::state::ProcessState

Example: inside the state module, we can use super::Process to mean
the same item as crate::process::Process

super acts like .. in file system paths: it refers to the parent module

14

Paths are module paths, not file system paths!

A module’s path need not directly reflect the file system (inline modules)

All paths in Rust are paths within crates and modules, not file system paths

15

Given the module tree below, how can code in the test submodule of state
refer to the ProcessState enum defined in the state module? 

crate
├── process
│ ├── state
│ │ └── test
│ └── test
└── test

A. ProcessState

B. state::ProcessState

C. super::ProcessState

D. crate::process::state::ProcessState

E. More than one of the above (which ones?)

16

Using use
We use the use keyword to bring items or modules into scope

mod state;

use state::ProcessState;

#[derive(Debug)]
pub struct Process {
 state: ProcessState,
}

impl Process {
 pub fn new() -> Self {
 Self {
 state: ProcessState::Runnable,
 }
 }
}

17

Relative path

Naming the enum
without the path

Given the module tree below, how can code in the test submodule of state
refer to the ProcessState enum defined in the state module assuming the
test submodule contains the line: use super::*;  

crate
├── process
│ ├── state
│ │ └── test
│ └── test
└── test

A. ProcessState

B. state::ProcessState

C. super::ProcessState

D. crate::process::state::ProcessState

E. More than one of the above (which ones?)

18

Public vs. private
Modules, functions, types, methods, struct fields are all private by default

Modules may not access the private items in their descendent modules

Modules may access private items in their ancestor modules

Examples

‣ Every module may access private items in the crate root

‣ process may not access private items in state

‣ state may access private items in process

‣ all test modules may access private items in their 

parent module

19

crate
├── process
│ ├── state
│ │ └── test
│ └── test
└── test

Accessing an item by path
To quote the Rust Reference

With the notion of an item being either public or private, Rust allows item
accesses in two cases:

1. If an item is public, then it can be accessed externally from some
module m if you can access all the item's ancestor modules from m.

2. If an item is private, it may be accessed by the current module and its
descendants.

https://doc.rust-lang.org/reference/visibility-and-privacy.html

20

The pub keyword
To make an item publicly visible outside the module, use pub

pub mod foo;
Declares a module foo and makes it public

‣ The contents of public modules are still private by default! 

pub struct Process {
 state: ProcessState,
}

Process is public, but its state field is still private

21

Public structs/enums
By default a public struct’s fields are private

Use pub before the field name to make that field public

pub struct Foo {
 pub x: i32,
 y: i32,
}

x is public, y is private

The variants of public enums are always public

22

Accessing items in private modules
// process.rs
mod state;

use state::ProcessState;

#[derive(Debug)]
pub struct Process {
 state: ProcessState,
}

impl Process {
 pub fn new() -> Self {
 Self {
 state: ProcessState::Runnable,
 }
 }

 pub fn state(&self) -> ProcessState {
 self.state
 }
}

// state.rs
#[derive(Debug, Clone, Copy)]
pub enum ProcessState {
 Running,
 Runnable,
 // ...
}

// main.rs
mod process;

use process::Process;

fn main() {
 let proc = Process::new();
 match proc.state() {
 process::state::ProcessState::Runnable => {
 println!(“Runnable”)
 }
 _ => println!("Something else"),
 }
}

23

Error!

The error: state module is private
error[E0603]: module `state` is private
 --> src/main.rs:9:18
 |
9 | process::state::ProcessState::Runnable => {
 | ^^^^^ private module -------- unit
variant `Runnable` is not publicly re-exported
 |
note: the module `state` is defined here
 --> src/process.rs:2:1
 |
2 | mod state;
 | ^^^^^^^^^^

24

Reexporting items from private modules
// process.rs
mod state;

use state::ProcessState;

#[derive(Debug)]
pub struct Process {
 state: ProcessState,
}

impl Process {
 pub fn new() -> Self {
 Self {
 state: ProcessState::Runnable,
 }
 }

 pub fn state(&self) -> ProcessState {
 self.state
 }
}

// state.rs
#[derive(Debug, Clone, Copy)]
pub enum ProcessState {
 Running,
 Runnable,
 // ...
}

// main.rs
mod process;

use process::Process;

fn main() {
 let proc = Process::new();
 match proc.state() {
 process::ProcessState::Runnable => {
 println!(“Runnable”)
 }
 _ => println!("Something else"),
 }
}

25

Removed state; still an error!

Brings ProcessState into
scope which gives a new path

by which we can refer to it

The error: process::ProcessState is private
error[E0603]: enum import `ProcessState` is private
 --> src/main.rs:9:18
 |
9 | process::ProcessState::Runnable => {
 | ^^^^^^^^^^^^ -------- unit variant `Runnable` is not publicly re-exported
 | |
 | private enum import
 |
note: the enum import `ProcessState` is defined here...
 --> src/process.rs:4:5
 |
4 | use state::ProcessState;
 | ^^^^^^^^^^^^^^^^^^^
note: ...and refers to the enum `ProcessState` which is defined here
 --> src/process/state.rs:3:1
 |
3 | pub enum ProcessState {
 | ^^^^^^^^^^^^^^^^^^^^^ consider importing it directly

26

Wrong advice???

Re-export ProcessState from process
// process.rs
mod state;

pub use state::ProcessState;

#[derive(Debug)]
pub struct Process {
 state: ProcessState,
}

impl Process {
 pub fn new() -> Self {
 Self {
 state: ProcessState::Runnable,
 }
 }

 pub fn state(&self) -> ProcessState {
 self.state
 }
}

// state.rs
#[derive(Debug, Clone, Copy)]
pub enum ProcessState {
 Running,
 Runnable,
 // ...
}

// main.rs
mod process;

use process::Process;

fn main() {
 let proc = Process::new();
 match proc.state() {
 process::ProcessState::Runnable => {
 println!(“Runnable”)
 }
 _ => println!("Something else"),
 }
}

27

Re-exporting state::ProcessState

Can now use
process::ProcessState

Advice
Leave things private by default until rustc complains

If you get an error accessing a field of a struct

‣ Should code outside the module be able to directly manipulate the

fields? If yes, make the fields public. If no, add accessor methods

If you get an error that a module is private while accessing an item in it

‣ Should external code know about/be able to access the module? If yes,

make the module public, if no, re-export the item from the child module

If you get an error that an item in a public module is private

‣ Should external code be able to access it? If yes, make it public

28

