
CS 241: Systems Programming

Lecture 16. Processes

Fall 2023

Prof. Stephen Checkoway

1

Processes are instances of running programs

Every time we open a program or run one on the command line, the kernel
creates a new process

Each process has

‣ memory allocated to it by the kernel for code and data (including the

stack and the heap)

‣ a process state (next slide)

‣ a process id

‣ a table of open files (including stdin/stdout/stderr)

‣ other data including a user id, group id, and various permissions

The kernel is responsible for running processes

2

Process states
Every process in the system is in one of several states

‣ Running/Runnable — Process is running on a CPU or able to run

‣ Interruptable sleep — Process is asleep but can be awakened via a

signal

‣ Uninterruptable sleep — Process is asleep but will not wake for a signal

‣ Stopped — Process has been suspended (e.g., ctrl-Z)

‣ Zombie — Process has exited but is still in the process table until its

parent uses the wait system call to “reap” it

3

Process state transitions

4

Running/
Runnable (R)

Interruptable
sleep (S)

Uninterruptable
sleep (D)

Stopped (T)

Zombie (Z)

Request disk I/O
(for example)

I/O completes
(for example)

System call

System call completes;
Signal arrives; or

Process is awakened explicitly

Ctrl-z
(SIGSTOP)

Process is resumed
(SIGCONT)

Exit/kill system call

Printing the process state
$ ps -e -o pid,state,command

This will print the process ID, process state, and command name of every
process on the system

 PID S COMMAND
 1 S /sbin/init splash
 …
1156303 R sshd: steve@pts/0
1156310 S -bash
1156474 S /usr/libexec/tracker-store
1156493 R ps -e -o pid,state,command

5

Process and Kernel Model

6

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process n

…

KernelSystem

Calls

write

read

fork
System

Management Scheduling

Context

Switching

System calls
A process makes a system call to request the kernel take an action on the
process’s behalf

Examples include

‣ Opening/creating/reading/writing/closing files and directories

‣ Sending network packets

‣ Running new processes

‣ Exiting (a program stops running by making a request to the kernel)

‣ Suspending/resuming other processes

‣ Sending information between processes

7

The kernel is responsible for
Handling system calls (either performing the requested action or denying the
request)

Managing hardware resources including

‣ CPUs

‣ GPUs

‣ Timers

‣ Networking hardware

Process control

‣ Starting/stopping processes

‣ Switching which process is running on a CPU

8

How does the kernel get control
To perform its tasks, the kernel must get control of the CPU

Running process can give up control voluntarily

‣ Process makes a blocking system call, e.g., reading a file

‣ Control goes to kernel, which dispatches a process

Or, CPU is forcibly taken away: preemption

‣ While kernel is running, it configures a hardware timer

‣ When timer expires, the hardware interrupts the CPU

‣ The interrupt forces control to go to kernel

9

User and kernel mode
Modern OSes leverage hardware support to have distinct operating modes:
user mode and kernel mode

Modern hardware has privileged instructions for managing processes and
hardware that can only run in kernel mode

‣ If user programs attempt to run them, the hardware traps into the

kernel

10

Why do you think modern processors support user vs. kernel mode?

A. It’s faster to manage hardware in kernel mode than in user mode

B. It’s safer to prevent applications from interacting with hardware like hard
drives/solid state drives directly

C. Government purchasing regulations discourage selling computers without it

D. It prevents buggy or malicious applications from interfering with the kernel’s
operation

E. More than one of the above. (Which ones?)

11

Switching between user and kernel mode
Process makes system call or is interrupted (by hardware or software)

‣ These are the only ways of entering the kernel

First: In hardware

‣ Switch from user to kernel mode

‣ Go to fixed kernel location: interrupt/trap handler

Next: In software (in the kernel)

‣ Run handler code

‣ Return from interrupt/trap

• Return to user mode

12

Timesharing

Multiple processes, single CPU (uniprocessor)

Conceptually, each process makes progress over time

In reality, each periodically gets quantum of CPU time

Illusion of parallel progress by rapidly switching CPU

13

P1
P2

P3

P1 P2 P3

quantum
P1

P2

P3

time

Switching between different processes for timing sharing is not free. It takes
time and memory and energy (think about your phone’s battery) away from
doing useful work (running the processes). A different approach would be to
run each process in order until it has completed. This is called batch
processing.

What are the benefits and drawbacks of timesharing? (Think of some of
each.)

A. Select A when you have an answer

14

How is timesharing implemented?
Kernel keeps track of the state of each process

Characterizes state of process’s progress

‣ Running: actually making progress, using CPU

‣ Runnable: able to make progress, but not using CPU

‣ Sleeping: not able to make progress, can’t use CPU

‣ Etc.

Kernel selects a process in the Runnable, lets it run

‣ Eventually, the kernel gets back control

‣ Selects another ready process to run and performs a context switch

‣ And repeat

15

Context
Every process has an execution context consisting of

‣ General purpose register values

‣ Floating point register values

‣ Stack pointer (used for managing stack frames)

‣ Instruction pointer (the address of the next instruction in memory to

execute)

‣ Other hardware-specific state

16

How a context switch occurs
Switch to kernel

In software (in the kernel)

‣ Save context of last-running process

‣ Conditionally

• Select new process from those that are ready

• Restore context of selected process

‣ Return to user mode

17

Multi-processor system
Same time-sharing behavior occurs but now the kernel has multiple CPUs it
can schedule processes on

More complicated because now multiple processes really are running at
once!

Not all CPUs in the system are the same, particularly in devices like phones

‣ Fast, power-hungry CPUs

‣ Slow, low-power CPUs

‣ Kernel has to decide which processes to allocate to which CPUs

18

Manipulating processes from the command line

Listing running processes: ps (you’re going to implement this!), pgrep

Stopping (suspending) a foreground process: ctrl-z

‣ Foreground processes are those that write to/read from the terminal

Running a stopped process:

‣ fg — runs a stopped process and makes it a foreground process

‣ bg — runs a stopped process and makes it a background process

Causing a process to exit

‣ kill — sends one of several signals to processes, SIGTERM (the default)

terminates the process

19

