
CS 241: Systems Programming
Lecture 15. Enums

Fall 2023

Prof. Stephen Checkoway

1

Process states
Every process in the system is in one of several states

‣ Running/Runnable — Process is running on a CPU or able to run

‣ Interruptable sleep — Process is asleep but can be awakened via a

signal

‣ Uninterruptable sleep — Process is asleep but will not wake for a signal

‣ Stopped — Process has been suspended (e.g., ctrl-Z)

‣ Zombie — Process has exited but is still in the process table until its

parent uses the wait system call to “reap” it

2

Printing the process state
$ ps -e -o pid,state,command

This will print the process ID, process state, and command name of every
process on the system

 PID S COMMAND
 1 S /sbin/init splash
 …
1156303 R sshd: steve@pts/0
1156310 S -bash
1156440 I [kworker/u96:7-nfsiod]
1156474 S /usr/libexec/tracker-store
1156493 R ps -e -o pid,state,command

3

Modeling the process state
Enums let us model a situation where a value is one of a set of possible values, called variants
/// Every process is in one of these possible states
enum ProcessState {
 /// Process is running on a CPU
 Running,

 /// Process is ready to be run
 Runnable,

 /// Process is asleep but can be awakened by a signal
 InterruptableSleep,

 /// Process is asleep but cannot be awakened by a signal
 UninterruptableSleep,

 /// Process is stopped
 Stopped,

 /// Process has died but hasn't yet been "reaped"
 Zombie,
}

4

Using an enum
 let running = ProcessState::Running;
 let stopped = ProcessState::Stopped;

In general, you name a variant as EnumName::VariantName

5

Match
impl ProcessState {
 fn is_asleep(&self) -> bool {
 match self {
 ProcessState::Running => false,
 ProcessState::Runnable => false,
 ProcessState::InterruptableSleep => true,
 ProcessState::UninterruptableSleep => true,
 ProcessState::Stopped => false,
 ProcessState::Zombie => false,
 }
 }
}

6

We can implement methods for enums

match statements must
cover all variants

Calling methods on enums
fn main () {
 let running = ProcessState::Running;
 let stopped = ProcessState::Stopped;

 println!("{}", ProcessState::InterruptableSleep.is_asleep());
 println!("{}", running.is_asleep());
}
Output:
true
false

7

Match with wildcard _
impl ProcessState {
 fn is_asleep(&self) -> bool {
 match self {
 ProcessState::InterruptableSleep => true,
 ProcessState::UninterruptableSleep => true,
 _ => false,
 }
 }
}

8

matches everything

Enums with data
We can associate different (types and amounts of) data with each variant

enum Color {
 White,
 Black,
 Red,
 Green,
 Blue,
 Other(u8, u8, u8),
}

fn main() {
 let black: Color = Color::Black,
 let pink: Color = Color::Other(247, 98, 210);
}

9

Matching enums with data
fn main() {
 let color = Color::Other(200, 100, 22);

 match color {
 Color::White => println!("White"),
 Color::Black => println!("Black"),
 Color::Red => println!("Red"),
 Color::Green => println!("Green"),
 Color::Blue => println!("Blue"),
 Color::Other(red, green, blue) => {
 println!("({red}, {green}, {blue})");
 }
 }
}

10

Can use a block
for any match case

Omit the comma after a
block

Enums with named data
enum Color {
 Hsv {
 hue: u16,
 saturation: u8,
 value: u8,
 },
 Rgb {
 red: u8,
 green: u8,
 blue: u8
 },
 Cmyk {
 cyan: u8,
 magenta: u8,
 yellow: u8,
 black: u8,
 }
}

fn main() {
 let pink: Color = Color::Rgb {
 red: 247,
 green: 98,
 blue: 210
 };
 let dark_green: Color = Color::Hsv {
 hue: 111,
 saturation: 96,
 value: 51
 };
 let gray: Color = Color::Cmyk {
 cyan: 0,
 magenta: 0,
 yellow: 0,
 black: 25
 };
}

11

Variants aren’t separate types!
It’s important to recognize that an enum’s variants aren’t separate types

let invalid: Color::Rgb = Color::Rgb {
 red: 247,
 green: 98,
 blue: 210
};

error[E0573]: expected type, found variant `Color::Rgb`
 --> enums.rs:243:14
 |
243 | let invalid: Color::Rgb = Color::Rgb {
 | ^^^^^^^^^^
 | |
 | not a type
 | help: try using the variant's enum: `Color`

12

We can match enums with named data by using a names for the fields.
Which of the following is a correct match on the Color type with variants
Hsv, Rgb, and Cmyk?

// A
match color {
 Color::Rgb { red, green, blue } => {
 println!("{red}, {green}, {blue}")
 }
 _ => ()
}

// B
match color {
 Color::Rgb { red, green, blue } => {
 println!("{red}, {green}, {blue}")
 }
}

// C
match color {
 Rgb { red, green, blue } => {
 println!("{red}, {green}, {blue}")
 }
 _ => ()
}

// D
match color {
 Rgb { red, green, blue } => {
 println!("{red}, {green}, {blue}")
 }
}

// E. More than one of the above.

13

Structs vs. enums
Structs and enums both group related data

Structs are useful when each instance always has multiple, related values

Enums are useful when you sometimes have some data and others times
have other data

14

Every process has some data associated with it. It has a process state and a
user ID (uid) and a group ID (gid) among other data. Which of these
definitions of Process should you use to model this?

struct Process {
 state: ProcessState,
 uid: u32,
 gid: u32,
}

enum Process {
 State(ProcessState),
 Uid(u32),
 Gid(u32),
}

A. struct

B. enum

C. Either struct or enum (both work)

D. Neither struct nor enum

15

Debug representation, Clone
Like with structs, we can (and probably should) derive Debug and Clone

/// Every process is in one of these possible states
#[derive(Debug, Clone)]
enum ProcessState {
 /// Process is running on a CPU
 Running,
 …
}

16

Comparing enum values with ==
fn main () {
 let state = ProcessState::Running;

 if state == ProcessState::Stopped {
 todo!()
 }
}
error[E0369]: binary operation `==` cannot be applied to type `ProcessState`
 --> enums.rs:52:14
 |
52 | if state == ProcessState::Stopped {
 | ----- ^^ --------------------- ProcessState
 | |
 | ProcessState
 |
note: an implementation of `PartialEq` might be missing for `ProcessState`
 --> enums.rs:6:1
 |
6 | enum ProcessState {
 | ^^^^^^^^^^^^^^^^^ must implement `PartialEq`
help: consider annotating `ProcessState` with `#[derive(PartialEq)]`

17

Derive PartialEq and Eq
/// Every process is in one of these possible states
#[derive(Debug, Clone, PartialEq, Eq)]
enum ProcessState {
 /// Process is running on a CPU
 Running,
 …
}

PartialEq gives us access to == and !=.

Eq adds nothing else but informs the compiler that ProcessStates are equal
to themselves

18

Option
A built-in enum that is either a None or a Some(x) for some value x  

enum Option<T> {
 Some(T),
 None,
}

let x: Option<String> = None;
let y: Option<u32> = Some(9123474);

The <T> is a type parameter. We have different types of Option depending
on T

19

Option models the situation where a value may be
absent
Uses of Option:

‣ Implementing optional command line arguments using clap 
/// Print LINES lines of each of the specified files
#[arg(short = 'n', long)]
lines: Option<usize>,

‣ Searching for a value in a collection 
let s = String::from(…);
let pos: Option<usize> = s.find('🤓');

20

Result
A built-in enum that is either Ok(x) or Err(y) for some values x and y 

enum Result<T, E> {
 Ok(T),
 Err(E),
}

21

Many methods in the Rust standard library return
a Result
All of the functions that perform input/output return a std::io::Result<T>

std::io::Result<T> is a type alias for Result<T, std::io::Error>

‣ This is a normal Result with a specialized error type std::io::Error

Examples

‣ Opening a file with File::open(path) returns an io::Result<File>

‣ Creating a file with File::create(path) returns an
io::Result<File>

‣ .read() on a file returns an io::Result<usize> where the size is the
number of bytes read

‣ .write_all() on a file returns an io::Result<()> where the Ok(())
indicates success but carries no additional data

22

Propagating errors using ?
use std::fs::File;
use std::io::{self, BufRead, BufReader};

fn read_first_lines(path: &str) -> io::Result<String> {
 let file = File::open(path)?; // Returns any errors
 let mut reader = BufReader::new(file);
 let mut line = String::new();

 reader.read_line(&mut line)?; // Returns any errors
 Ok(line)
}

23

Using match to handle Results
fn main() {
 let path = "file.txt";
 let result = read_first_lines(path);
 match result {
 Ok(line) => {
 println!("First line: {line}")
 }
 Err(err) => {
 // Write the error to stderr
 eprintln!("{path}: {err}")
 }
 }
}

24

Generic Result type
From lab:

type Result<T> = std::result::Result<T, Box<dyn std::error::Error>>;

The error type is a Box holding any type that implements the Error trait

‣ All of the standard library error types (like std::io::Error) implement

Error

If result is an Err(err), then result? will try to convert err into the
correct error type to be returned from the function

‣ Any type that implements Error can be turned into a Box<dyn Error>
‣ A String can be turned into a Box<dyn Error>

25

Match and ownership
If an enum has data, then matching an instance of the enum will move the data

fn main() {
 let opt: Option<String> = Some(String::from("owned"));

 match opt {
 None => (),
 Some(s) => println!("{s}"), // Moves out of the opt
 }
 println!("{opt:?}");
}

26

Error message
error[E0382]: borrow of partially moved value: `opt`
 --> enums.rs:179:15
 |
177 | Some(s) => println!("{s}"), // Moves out of the opt
 | - value partially moved here
178 | }
179 | println!("{opt:?}");
 | ^^^^^^^ value borrowed here after partial move

27

Two solutions
1. Match on &opt instead which gives a reference to the inner data

 match &opt {
 None => (),
 Some(s) => println!("{s}"), // s is a reference
 }

2. Use the ref keyword to indicate the pattern should bind a reference to the
data

 match opt {
 None => (),
 Some(ref s) => println!("{s}"), // s is a reference
 }

28

if let (a match alternative)
In many cases, you only care if an enum is a particular variant

 match s.find("tr") {
 Some(idx) => {
 println!("Substring 'tr' found at index {idx}");
 }
 _ => {
 println!("Substring 'tr' not found");
 }
 }
can be written more simply using if let

 if let Some(idx) = s.find("tr") {
 println!("Substring 'tr' found at index {idx}");
 } else {
 println!("Substring 'tr' not found");
 }
There’s a similar while let pattern = expr { }

29

