
CS 241: Systems Programming
Lecture 12. References

Fall 2023

Prof. Stephen Checkoway

1

Boxes are pointers that own their data
Recall a Box is a pointer to valid data in the heap

When a Box is dropped, the heap memory is deallocated

When a Box is assigned to another variable (or passed to a function),
ownership of the Box moves to the new variable

When a Box is moved, the data cannot be accessed from the old variable

Strings and Vecs have a Box* holding their contents

*Not really a Box, but similar

2

What does this code do when compiled and run (assuming it compiles)?

fn main() {
 let m1 = String::from("Hello");
 let m2 = String::from("world");
 greet(m1, m2);
 let s = format!("{} {}", m1, m2);
}

fn greet(g1: String, g2: String) {
 println!("{} {}!", g1, g2);
}

A. Compile-time error

B. Compiles but run-time error

C. Prints “Hello World!”

D. Prints “Hello World!” then panics

3

References are non-owning pointers
References are a way to lend an object to some code without making a
clone/moving the data

We use &var to create a reference to the variable var

4

5

m1 and m2 own their heap data

g1 and g2 do not own anything

When greet() returns, nothing is freed

Dereferencing a pointer
We use * to dereference a pointer

‣ Dereferencing means to get or assign the value pointed at by the reference

fn main() {
 let mut x: Box<(i32, bool)> = Box::new((0, false));
 *x = (42, true); // Dereferences and assigns a new value
 println!("{x:?}");

 let r: &i32 = &x.0; // Creates a reference to x.0
 let i: i32 = *r; // Dereferences the reference
 println!("i = {i}");
 println!("r = {r}"); // Automatic dereference!
}

6

Variable Value
x

r

i 42

(42, true)
HeapStack

Output: 
(42, true)
i = 42
r = 42

References + modification = sadness
num points to the third element of v

Pushing a new element might cause
v’s heap memory to be reallocated

Now num points at invalid memory

If Rust allowed this, dereferencing
the reference would be undefined
behavior

7

Pointer safety principle
“Data must never be aliased and mutated at the same time”

For Boxes, the pointers are moved rather than copied so only one Box owns
any given piece of heap data (no aliases)

References are non-owning pointers: they create temporary aliases

‣ Rust must disallow mutation while a reference is alive

8

Borrow Checker
Every variable has three kinds of permissions

‣ Read (R): data can be copied to another location

‣ Write (W): data can be modified in place

‣ Own (O): data can be mOved or drOpped

Creating a variable with let makes the variable RO

Creating a variable with let mut makes the variable RWO

Rust checks that variables have appropriate permissions each place they are
used at compile time using the Borrow Checker

9

References change permissions
Creating a reference to a variable
temporarily remove W and O
permissions from the variable

This enforces the pointer safety
principle, “data must never be
aliased and mutated at the same
time,” by disallowing mutation while
the reference is alive and aliasing
the value

After the reference’s final use, the
variable’s permissions are regained

10

Why does Rust prevent this code from compiling in terms of permissions?
(What would happen if it didn’t prevent it?)

let mut v: Vec<i32> = vec![10, 20, 30];
let r: &i32 = &v[0];
v.push(40); // ERROR on this line
println!("{}", *r);

A. v never had W permission

B. v lost W permission when the
reference was created

C. v lost O permission when the
reference was created

D. *r doesn’t have R permission

E. r doesn’t have R permission

11

Why do references cause O permission to be temporarily dropped?

A. A limitation of Rust’s analysis

B. Moving or dropping the value pointed to by the reference would cause
the reference to point at invalid memory

C. O permission is needed for writing; writing and aliasing is disallowed by
the pointer safety principle so O permission is dropped while the
reference is alive

12

Mutable references
We can create mutable references that allow modification using &mut var

fn append_bang(s: &mut String) {
 s.push('!');
}

fn main() {
 let mut msg = String::from("References aren't so tricky");
 append_bang(&mut msg);
 println!("{msg}");
}

13

Mutable references remove RWO
When creating a mutable
reference, RWO are temporarily
dropped on the underlying
variable

When num is created, v loses
RWO

After the last use of num, v
regains RWO

14

Pointer safety principle with references
PSP: Data must never be aliased and mutated at the same time

Rust allows a single mutable reference (&mut var) to a variable; OR 
any number of shared references (&var)

When any reference is alive, the variable does not have WO (because the
reference is an alias so the value must not be mutated through the variable)

When a mutable reference is alive, the variable does not have any
permissions (because the mutable reference allows mutation so aliases must
not be allowed)

15

Data must outlive references
It’s not possible to return a reference to a stack variable because the
variable would be dropped at the end of the function so the reference would
point to invalid memory

Rustc tracks an object’s lifetime to ensure all references are dropped before
the underlying data is dropped

‣ This can be one of the most difficult parts of Rust!

16

I got an error, now what?
When you get a borrow checker error, it means one of two things

1. Your code is trying to do something actually unsafe and the borrow
checker just preventing it! This is the most common reason

2. Your code is actually safe, but Rust doesn’t know how to prove it. This is
significantly less common

The first step is to examine the code closely to determine which it is.

17

I got an error, now what?
Ask yourself:

Could this code cause undefined behavior by trying to modify/reallocate
memory while a reference to it is held? If so, that’s a bug!

Does this code try to keep a reference to data that has been dropped? If so,
that’s a bug!

Is the code trying to mutate an argument through a shared (i.e., not mutable)
reference? Does the caller expect the argument to be modified? If so, make
the reference mutable. If not, that’s a bug!

18

I got an error, now what?
In some cases, you can clone() the data from the reference and modify that

With arrays, you can work with indices rather than references

Sometimes (e.g., when working with arrays), it really can be a limitation of
Rust’s analysis.

‣ Creating a reference to any element in an array precludes modifying any

other element of the array while the reference is alive

19

