
CS 241: Systems Programming

Lecture 4. Environment and

expansion
Fall 2023

Prof. Stephen Checkoway

1

Program behavior

Most programs can have different behaviors when run multiple times. E.g.,
the ls program can list the contents of different directories and can display
the output in multiple formats

2

[worksec:~/teaching/241/S20] steve$ ls
check_clicker.py examples notes.md old-notes.md rubrics slides
[worksec:~/teaching/241/S20] steve$ ls rubrics
hw1-rubric.md hw2-rubric.md hw3-rubric.md hw4-rubric.md  
hw5-rubric.md hw6-rubric.md
[worksec:~/teaching/241/S20] steve$ ls -l rubrics
total 32
-rw-r--r-- 1 steve staff 3929 Feb 3 09:38 hw1-rubric.md
-rw-r--r-- 1 steve staff 6147 Feb 3 09:38 hw2-rubric.md
-rw-r--r-- 1 steve staff 5159 Feb 3 09:38 hw3-rubric.md
-rw-r--r-- 1 steve staff 4034 Feb 3 09:38 hw4-rubric.md
-rw-r--r-- 1 steve staff 424 Feb 3 09:38 hw5-rubric.md
-rw-r--r-- 1 steve staff 782 Feb 3 09:38 hw6-rubric.md

What controls program behavior?

3

What controls program behavior?

Input arguments (e.g., file/directory paths, a URLs or command names)

Contents of the input files

Command line options

Configuration/preference files (or OS-specific configuration/preference
databases)

User input (for interactive programs)

Environment variables!

3

Bash simple command revisited

Recall we said a simple command has the form: 
	 ⟨command⟩ ⟨options⟩ ⟨arguments⟩

The truth is more complicated

‣ ⟨variable assignments⟩ ⟨words and redirections⟩

‣ Variables and their assigned values are available to the command

‣ The first word is the command, the rest are arguments*

‣ FOO=blah BAR=okay cmd aaa >out bbb 2>err ccc <in

‣ FOO=blah BAR=okay cmd aaa bbb ccc <in >out 2>err

‣ Real example: $ IFS= read -r var

4

* Bash doesn't distinguish between options and arguments, that's up to each command

Environment variables

Another method for passing data to a program

Essentially a key/value store (i.e., a hash map)

‣ $ FOO=blah BAR=okay cmd aaa bbb ccc

‣ cmd has access to the FOO and BAR environment variables plus args

Environment variables are inherited from the parent

‣ Every program started from the shell has access to a copy of the shell's
environment

5

Example: color output from ls

6

Bash variables

Setting and using variables in bash

‣ $ place=Earth  
$ echo "Hello ${place}."  
Hello Earth.

By default, variables set in bash aren't inherited by children

‣ $ bash # Start a new shell  
$ echo "Hello ${place}."  
Hello . # ${place} expanded to the empty string

7

Exporting variables

We can export a variable which causes it to appear in the environment of
children

$ place=World  
$ export place  
$ bash # Starting a new shell  
$ echo "Hello ${place}."  
Hello World.

Equivalently, $ export place=World

8

Summarizing

9

Summarizing

$ FOO=bar cmd1  
$ cmd2

‣ FOO available to cmd1 but not cmd2

9

Summarizing

$ FOO=bar cmd1  
$ cmd2

‣ FOO available to cmd1 but not cmd2

$ FOO=bar  
$ cmd1  
$ cmd2

‣ FOO not available to either cmd1 or cmd2

9

Summarizing

$ FOO=bar cmd1  
$ cmd2

‣ FOO available to cmd1 but not cmd2

$ FOO=bar  
$ cmd1  
$ cmd2

‣ FOO not available to either cmd1 or cmd2

$ export FOO=bar  
$ cmd1  
$ cmd2

‣ FOO available to both cmd1 and cmd2
9

A. W, X, Y, and Z

B. W, Y, and Z

C. X, Y, and Z

D. Y and Z

E. Z

10

If bash is started via 

$ W=foo bash  
(so W is in bash's environment) and then following lines are executed,  
$ X=bar  
$ export Y=qux  
$ Z=X command  
which environment variables are available to command?

A. before

B. after

C. beforeafter

D. Just a newline

E. Nothing, it's a syntax error

11

What is printed when I run this?  

 

$ FOO=before  
$ FOO=after echo "${FOO}"

Useful environment variables

EDITOR	 — Used when some commands need to launch an editor (e.g., git)

HOME		 — Your home directory

LANG		 — The language programs should use (this is complicated!)

PAGER	 — A program like less that's used to display pages of text

PATH		 — Colon-separated list of directories to search for commands

PS1	 	 — The shell's prompt

PWD	 	 — The current working directory

SHELL	 — The shell you're using

TERM		 — The terminal type, used to control things like color support

UID	 	 — The real user ID number

USER		 — User name

12

Adding directories to PATH

If you install software in ${HOME}/local/bin, you can modify your PATH to
access it

$ export PATH="${HOME}/local/bin:${PATH}"
This adds ${HOME}/local/bin to the front of the PATH so it is searched first

$ export PATH="${PATH}:${HOME}/local/bin"
This adds ${HOME}/local/bin to the end of the PATH so it is searched last

13

Environment variables are inherited

Environment variables are inherited by default by child processes

1. Bash starts up and sets some environment variables (from .bash_profile)

2. User runs git commit with no commit message

3. Git uses the EDITOR environment variable to open an editor for the user
to enter the commit message

No need pass options to Git to select the editor, it can use the standard
environment variable

14

Environment variables are inherited

Environment variables are inherited by default by child processes

1. Bash starts up and sets some environment variables (from .bash_profile)

2. User runs a script; the environment is inherited

3. The script runs git commit without a commit message; the environment is
inherited

4. Git uses the EDITOR environment variable to open an editor for the user
to enter the commit message

15

Bash expansion

Bash first splits lines into words by (unquoted) space or tab characters 
	 $ echo 'quoted string' unquoted string

‣ Word 1: echo

‣ Word 2: 'quoted string'

‣ Word 3: unquoted

‣ Word 4: string

Most words then undergo expansion

‣ The values in variable assignment var=value (but not the names)

‣ The command and arguments

‣ The right side of redirections, e.g., 2>path

16

Variable expansion

Most common expansions are variable expansion and globbing

base_dir=/tmp
if [[$# -eq 1]]; then
 base_dir="$1"
fi

echo "Copying all Rust files to ${base_dir}/src"
mkdir -p "${base_dir}/src"
cp *.rs "${base_dir}/src"

17

Bash expansion

Order of expansion

‣ Brace expansion

‣ In left-to-right order, but at the same time

• Tilde expansion

• Variable expansion

• Arithmetic expansion

• Command expansion

• Process substitution

‣ Word splitting (yes, this happens after the shell split the input into words!)

‣ Pathname expansion

And then each of the results undergoes quote removal

18

Brace expansion

Unquoted braces { } expand to multiple words

‣ {foo,bar,baz}.txt → foo.txt bar.txt baz.txt

‣ foo{a,b,,c}bar → fooabar foobbar foobar foocbar

‣ '{a,b}' → '{a,b}'

‣ "{a,b}" → "{a,b}"

‣ {1..5} → 1 2 3 4 5

‣ {x..z} → x y z

‣ {1,2}{x..z} → 1x 1y 1z 2x 2y 2z

‣ {a,b{c,d}} → a bc bd

19

Tilde expansion

Words starting with unquoted tildes expand to home directories

‣ ~ → /usr/users/noquota/faculty/steve

‣ ~steve → /usr/users/noquota/faculty/steve

‣ ~aeck → /usr/users/noquota/faculty/aeck

‣ \~steve → \~steve

‣ '~steve' → '~steve'

20

Parameter/variable expansion

We can assign variables via var=value (e.g., class='CS 241') the shell
defines others like HOME and PWD

Words containing ${var} or $var are expanded to their value, even in
double quoted strings (you almost always want to put them in quotes!)

‣ ${HOME} → /usr/users/noquota/faculty/steve

‣ x${PWD}y → x/tmpy # the current working directory

‣ x$PWDy → x # no PWDy variable so it expands to the empty string

‣ '${class}' → '${class}'

‣ \${class} → \${class}

‣ "${class}" → "CS 241"

21

Command substitution

Replaces $(command) with its output (with the trailing newline stripped)

‣ "Hello $(echo "${class}" | cut -c 4-)" → "Hello 241"

These can be nested

You can also use `command` instead, but don't do that, use $(…)

22

Arithmetic expansion

$((arithmetic expression)) expands to the result, assume x=10

‣ $((3+x*2 % 6)) → 5

‣ \$((3+x*2 % 6)) → # syntax error

‣ '$((3+x*2 % 6))' → '$((3+x*2 % 6))'

‣ "$((3+x*2 % 6))" → "5"

23

Process substitution

Read the man page for bash if you want, we may come back to it

24

Word splitting

A misfeature in bash!

The results of  
	 parameter/variable expansion ${…}, 
	 command substitution $(…), and  
	 arithmetic expansion $((…))  
not in double quotes is split into words by splitting on (by default) space,
tab, and newline

You never want word splitting! If you're using a $, put it in double quotes!

25

Pathname expansion

We saw this previously!

26

Quote removal

Unquoted ', ", and \ characters are removed in the final step

‣ 'foo bar' → foo bar (one word)

‣ "foo bar" → foo bar (one word)

‣ "${class}" → CS 241 (one word)

‣ "${class} is"' fun' → CS 241 is fun (one word)

Upshot of quote removal:  
$ program foo\ bar  
$ program 'foo bar'  
$ program "foo bar"

Program’s first command line argument is foo bar with no quotes for all 3

27

Expansion summary

Braces form separate words [{a,b,c}] → [a] [b] [c]

Tildes give you home directories ~ → /home/steve

Variables expand to their values "${class}" → "CS 241"

Commands expand to their output "$(ls *.txt | wc -l)" → "3"

Wildcards expand to matching file names *.txt → a.txt b.txt c.txt

Put literal strings in 'single quotes'

Put strings with variables/commands in "${double} $(quotes)"
28

A. $ mkdir "${books}"

B. $ mkdir "$(books)"

C. $ mkdir ${books}

D. $ mkdir $(books)

E. $ mkdir $books

29

If we have set a variable 

books='Good books'  
and we want to create a directory with that name, which command should
we use?

